IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v222y2008i3p327-335.html
   My bibliography  Save this article

Optimal protection of complex networks exposed to a terrorist hazard: A multi-objective evolutionary approach

Author

Listed:
  • D E Salazar A
  • C M Rocco S
  • E Zio

Abstract

The present paper proposes an approach for prioritizing the protection of a network system exposed to a terrorist attack. The approach is based on a multi-objective optimization (MO) formulation for finding Pareto optimal solutions with respect to two indicators measuring the damage that the attack may cause: the time to reach all network destination nodes (TTRAD) and the average number of persons affected (ANPA). The MO is tackled by means of a multi-objective evolutionary algorithm (MOEA) that combines the basic concepts of dominance with the general characteristics of evolutionary algorithms. Within this optimization scheme, the goodness of each alternative protection scheme is quantified by a combination of cellular automata (CA) and Monte Carlo (MC) simulation. Numerical examples illustrate how the approach is capable of identifying effective protection schemes.

Suggested Citation

  • D E Salazar A & C M Rocco S & E Zio, 2008. "Optimal protection of complex networks exposed to a terrorist hazard: A multi-objective evolutionary approach," Journal of Risk and Reliability, , vol. 222(3), pages 327-335, September.
  • Handle: RePEc:sae:risrel:v:222:y:2008:i:3:p:327-335
    DOI: 10.1243/1748006XJRR133
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR133
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Levitin, Gregory & Hausken, Kjell, 2008. "Protection vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1444-1451.
    2. George E. Apostolakis & Douglas M. Lemon, 2005. "A Screening Methodology for the Identification and Ranking of Infrastructure Vulnerabilities Due to Terrorism," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 361-376, April.
    3. Enrico Zio & Claudio M. Rocco S., 2008. "Security assessment in complex networks exposed to terrorist hazard: a simulation approach," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 80-95.
    4. Kjell Hausken, 2011. "Protecting complex infrastructures against multiple strategic attackers," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(1), pages 11-29.
    5. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo, 2004. "A topological analysis of the Italian electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 92-97.
    6. Yacov Y. Haimes & Thomas Longstaff, 2002. "The Role of Risk Analysis in the Protection of Critical Infrastructures Against Terrorism," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 439-444, June.
    7. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    8. Salazar, Daniel & Rocco, Claudio M. & Galván, Blas J., 2006. "Optimization of constrained multiple-objective reliability problems using evolutionary algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1057-1070.
    9. Levitin, Gregory & Ben-Haim, Hanoch, 2008. "Importance of protections against intentional attacks," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 639-646.
    10. Stan Kaplan, 1997. "The Words of Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 17(4), pages 407-417, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levitin, Gregory & Hausken, Kjell & Dai, Yuanshun, 2014. "Optimal defense with variable number of overarching and individual protections," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 81-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    2. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    3. Bricha, Naji & Nourelfath, Mustapha, 2014. "Extra-capacity versus protection for supply networks under attack," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 185-196.
    4. Stephanie E. Chang & Timothy McDaniels & Jana Fox & Rajan Dhariwal & Holly Longstaff, 2014. "Toward Disaster‐Resilient Cities: Characterizing Resilience of Infrastructure Systems with Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 416-434, March.
    5. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Shital A. Thekdi & James H. Lambert, 2012. "Decision Analysis and Risk Models for Land Development Affecting Infrastructure Systems," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1253-1269, July.
    7. Michael R. Greenberg & Karen Lowrie & Henry Mayer & Tayfur Altiok, 2011. "Risk‐Based Decision Support Tools: Protecting Rail‐Centered Transit Corridors from Cascading Effects," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1849-1858, December.
    8. H Jönsson & J Johansson & H Johansson, 2008. "Identifying critical components in technical infrastructure networks," Journal of Risk and Reliability, , vol. 222(2), pages 235-243, June.
    9. Henrik Hassel & Alexander Cedergren, 2019. "Exploring the Conceptual Foundation of Continuity Management in the Context of Societal Safety," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1503-1519, July.
    10. Zio, E. & Golea, L.R., 2012. "Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 67-74.
    11. Barry Charles Ezell, 2007. "Infrastructure Vulnerability Assessment Model (I‐VAM)," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 571-583, June.
    12. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Levitin, Gregory, 2011. "Optimal network protection against diverse interdictor strategies," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 374-382.
    13. Dui, Hongyan & Si, Shubin & Wu, Shaomin & Yam, Richard C.M., 2017. "An importance measure for multistate systems with external factors," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 49-57.
    14. Zhaohui Yang & Krishna P. Paudel & Xiaowei Wen & Sangluo Sun & Yong Wang, 2020. "Food Safety Risk Information-Seeking Intention of WeChat Users in China," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    15. Lins, Isis Didier & Rêgo, Leandro Chaves & Moura, Márcio das Chagas & Droguett, Enrique López, 2013. "Selection of security system design via games of imperfect information and multi-objective genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 59-66.
    16. Ramirez-Marquez, Jose E. & Rocco S, Claudio M. & Levitin, Gregory, 2009. "Optimal protection of general source–sink networks via evolutionary techniques," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1676-1684.
    17. Vaibhav Gaur & Om Prakash Yadav & Gunjan Soni & Ajay Pal Singh Rathore, 2021. "A literature review on network reliability analysis and its engineering applications," Journal of Risk and Reliability, , vol. 235(2), pages 167-181, April.
    18. Yacov Y. Haimes, 2009. "On the Complex Definition of Risk: A Systems‐Based Approach," Risk Analysis, John Wiley & Sons, vol. 29(12), pages 1647-1654, December.
    19. Fabio Borghetti & Alessio Frassoldati & Marco Derudi & Igino Lai & Cristian Trinchini, 2022. "Road Tunnels Operation: Effectiveness of Emergency Teams as a Risk Mitigation Measure," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    20. Roger Flage & Terje Aven & Enrico Zio & Piero Baraldi, 2014. "Concerns, Challenges, and Directions of Development for the Issue of Representing Uncertainty in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1196-1207, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:222:y:2008:i:3:p:327-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.