IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v34y2025i1d10.1007_s10726-024-09909-6.html
   My bibliography  Save this article

Distributionally Robust Chance Constrained Maximum Expert Consensus Model with Incomplete Information on Uncertain Cost

Author

Listed:
  • Kai Zhu

    (University of Shanghai for Science and Technology)

  • Shaojian Qu

    (Anhui Jianzhu University)

  • Ying Ji

    (Shanghai University)

  • Yifan Ma

    (Shanghai University)

Abstract

The maximum expert consensus model (MECM) with uncertain cost is a prominent area of research in group decision-making (GDM). The typical approach to addressing uncertain costs involves either possessing detailed information about its distribution or ensuring that the result is optimal under worst-case cost scenarios. In this paper, we assume that the probability of meeting the total uncertain consensus cost is not less than a given threshold at a specified level of confidence. Only the first- and second-order moments and the support of uncertain costs are used to construct the ambiguous probability distribution set. Building on distributionally robust optimization (DRO), we propose a novel distributionally robust chance-constrained MECM (DRCC-MECM) with incomplete information on uncertain costs. Additionally, by approximating the total uncertain consensus cost chance constraint with a worst-case conditional value-at-risk (CVaR) constraint, the DRCC-MECMs with different aggregation operators are transformed into tractable semi-definite programming models. Finally, the efficacy and advantages of the proposed models are demonstrated through an application to transboundary water pollution control in China. Sensitivity and comparative analyses further underscore the effectiveness of the proposed models in addressing uncertain costs in this context.

Suggested Citation

  • Kai Zhu & Shaojian Qu & Ying Ji & Yifan Ma, 2025. "Distributionally Robust Chance Constrained Maximum Expert Consensus Model with Incomplete Information on Uncertain Cost," Group Decision and Negotiation, Springer, vol. 34(1), pages 135-175, February.
  • Handle: RePEc:spr:grdene:v:34:y:2025:i:1:d:10.1007_s10726-024-09909-6
    DOI: 10.1007/s10726-024-09909-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-024-09909-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-024-09909-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    2. Dimitris Bertsimas & Shimrit Shtern & Bradley Sturt, 2022. "Technical Note—Two-Stage Sample Robust Optimization," Operations Research, INFORMS, vol. 70(1), pages 624-640, January.
    3. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    4. Zhuolin Li & Zhen Zhang & Wenyu Yu, 2024. "Consensus reaching for ordinal classification-based group decision making with heterogeneous preference information," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 75(2), pages 224-245, February.
    5. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    6. Cheng, Dong & Zhou, Zhili & Cheng, Faxin & Zhou, Yanfang & Xie, Yujing, 2018. "Modeling the minimum cost consensus problem in an asymmetric costs context," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1122-1137.
    7. Ogryczak, Wlodzimierz & Sliwinski, Tomasz, 2003. "On solving linear programs with the ordered weighted averaging objective," European Journal of Operational Research, Elsevier, vol. 148(1), pages 80-91, July.
    8. Ma, Gang & Zheng, Junjun & Wei, Ju & Wang, Shilei & Han, Yefan, 2021. "Robust optimization strategies for seller based on uncertainty sets in context of sequential auction," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    9. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Feng, Bo, 2010. "The OWA-based consensus operator under linguistic representation models using position indexes," European Journal of Operational Research, Elsevier, vol. 203(2), pages 455-463, June.
    10. Gong, Zaiwu & Xu, Xiaoxia & Zhang, Huanhuan & Aytun Ozturk, U. & Herrera-Viedma, Enrique & Xu, Chao, 2015. "The consensus models with interval preference opinions and their economic interpretation," Omega, Elsevier, vol. 55(C), pages 81-90.
    11. Li, Huanhuan & Ji, Ying & Ding, Jieyu & Qu, Shaojian & Zhang, Huijie & Li, Yuanming & Liu, Yubing, 2024. "Robust two-stage optimization consensus models with uncertain costs," European Journal of Operational Research, Elsevier, vol. 317(3), pages 977-1002.
    12. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    13. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    14. Ren, Chao & Wei, Zhinong & Zhou, Yizhou & Chen, Sheng & Han, Haiteng & Sun, Guoqiang & Zang, Haixiang & Ji, Wenlu, 2024. "Distributionally robust CVaR optimization for resilient distribution system planning with consideration for long-term and short-term uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Weiwei & Gong, Zaiwu & Zhang, Wei-Guo & Xu, Yanxin, 2023. "Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1279-1295.
    2. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    3. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    4. Ying Ji & Huanhuan Li & Huijie Zhang, 2022. "Risk-Averse Two-Stage Stochastic Minimum Cost Consensus Models with Asymmetric Adjustment Cost," Group Decision and Negotiation, Springer, vol. 31(2), pages 261-291, April.
    5. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    6. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    7. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    8. Xuyuan Zhang & Hailin Liang & Shaojian Qu, 2024. "Robust Consensus Modeling: Concerning Consensus Fairness and Efficiency with Uncertain Costs," Mathematics, MDPI, vol. 12(8), pages 1-31, April.
    9. Weijun Xu & Xin Chen & Yucheng Dong & Francisco Chiclana, 2021. "Impact of Decision Rules and Non-cooperative Behaviors on Minimum Consensus Cost in Group Decision Making," Group Decision and Negotiation, Springer, vol. 30(6), pages 1239-1260, December.
    10. Yuanming Li & Ying Ji & Shaojian Qu, 2022. "Consensus Building for Uncertain Large-Scale Group Decision-Making Based on the Clustering Algorithm and Robust Discrete Optimization," Group Decision and Negotiation, Springer, vol. 31(2), pages 453-489, April.
    11. Meng, Fan-Yong & Zhao, Deng-Yu & Gong, Zai-Wu & Chu, Jun-Fei & Pedrycz, Witold & Yuan, Zhe, 2024. "Consensus adjustment for multi-attribute group decision making based on cross-allocation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 200-216.
    12. Li, Huanhuan & Ji, Ying & Ding, Jieyu & Qu, Shaojian & Zhang, Huijie & Li, Yuanming & Liu, Yubing, 2024. "Robust two-stage optimization consensus models with uncertain costs," European Journal of Operational Research, Elsevier, vol. 317(3), pages 977-1002.
    13. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    14. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    15. Wu, Zhongqi & Jiang, Hui & Zhou, Yangye & Li, Haoyan, 2024. "Enhancing emergency medical service location model for spatial accessibility and equity under random demand and travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    16. Sha Fan & Hengjie Zhang & Huali Tang, 2019. "A Linguistic Hierarchy Model with Self-Confidence Preference Relations and Its Application in Co-Regulation of Food Safety in China," IJERPH, MDPI, vol. 16(16), pages 1-21, August.
    17. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    18. Xiangrui Chao & Yucheng Dong & Gang Kou & Yi Peng, 2022. "How to determine the consensus threshold in group decision making: a method based on efficiency benchmark using benefit and cost insight," Annals of Operations Research, Springer, vol. 316(1), pages 143-177, September.
    19. Wu, Zhongqi & Jiang, Hui & Liang, Xiaoyu & Zhou, Yangye, 2024. "Multi-period distributionally robust emergency medical service location model with customized ambiguity sets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    20. Dombi, József & Jónás, Tamás, 2024. "Consensus measures based on a fuzzy concept," European Journal of Operational Research, Elsevier, vol. 315(2), pages 642-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:34:y:2025:i:1:d:10.1007_s10726-024-09909-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.