IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v24y2025i1d10.1007_s10700-025-09438-0.html
   My bibliography  Save this article

On disaggregation modeling of uncertainty group preferences considering trust networks

Author

Listed:
  • Xinxin Luo

    (Nanjing University of Information Science and Technology)

  • Zaiwu Gong

    (Nanjing University of Information Science and Technology)

  • Weiwei Guo

    (Nanjing University of Information Science and Technology)

  • Guo Wei

    (University of North Carolina at Pembroke)

  • Ting Jin

    (Nanjing University of Information Science and Technology)

Abstract

Preference disaggregation is a common method used in multi-criteria decision aid (MCDA) to derive preference models and reproduce the preference information of decision makers (DMs). Due to cognitive uncertainty, DMs may not be able to accurately, directly, and deterministically portray their preferences based on their own cognition, causing difficulties when trying to efficiently merging group information. To explore reasonable resolutions, this article addresses the uncertainty in the preference information provided by DMs and portrays this information by utilizing uncertainty theory. Furthermore, it integrates group information by constructing social networks and analyzing the similarity of decision results of DMs. Specifically, a group preference learning model is designed to aggregate the diverse individual preference information into group decision-making in accordance with trust-similarity centrality. Ultimately, by fully utilizing this integrated information, a group decision-making recommendation is produced. For missing values in the trust network, the product axiom is used as a propagation operator to maximize the propagated trust. To illustrate the proposed model, it is applied to rank European countries in terms of their university qualities. Finally, the proposed model is compared with the existing models that incorporate preference disaggregation or social networks, and the effectiveness of the proposed model in handling uncertainty and the advantages in interpretability are demonstrated.

Suggested Citation

  • Xinxin Luo & Zaiwu Gong & Weiwei Guo & Guo Wei & Ting Jin, 2025. "On disaggregation modeling of uncertainty group preferences considering trust networks," Fuzzy Optimization and Decision Making, Springer, vol. 24(1), pages 29-68, March.
  • Handle: RePEc:spr:fuzodm:v:24:y:2025:i:1:d:10.1007_s10700-025-09438-0
    DOI: 10.1007/s10700-025-09438-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-025-09438-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-025-09438-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miłosz Kadziński & Salvatore Greco & Roman Słowiński, 2013. "Selection of a Representative Value Function for Robust Ordinal Regression in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(3), pages 429-462, May.
    2. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2022. "Bayesian ordinal regression for multiple criteria choice and ranking," European Journal of Operational Research, Elsevier, vol. 299(2), pages 600-620.
    3. Kadziński, Miłosz & Tervonen, Tommi, 2013. "Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements," European Journal of Operational Research, Elsevier, vol. 228(1), pages 169-180.
    4. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2016. "Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model," Omega, Elsevier, vol. 63(C), pages 154-169.
    5. Beuthe, Michel & Scannella, Giuseppe, 2001. "Comparative analysis of UTA multicriteria methods," European Journal of Operational Research, Elsevier, vol. 130(2), pages 246-262, April.
    6. Liu, Bingsheng & Zhou, Qi & Ding, Ru-Xi & Palomares, Iván & Herrera, Francisco, 2019. "Large-scale group decision making model based on social network analysis: Trust relationship-based conflict detection and elimination," European Journal of Operational Research, Elsevier, vol. 275(2), pages 737-754.
    7. Wu, Xingli & Liao, Huchang, 2023. "Value-driven preference disaggregation analysis for uncertain preference information," Omega, Elsevier, vol. 115(C).
    8. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    9. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Angilella & Marta Bottero & Salvatore Corrente & Valentina Ferretti & Salvatore Greco & Isabella M. Lami, 2016. "Non Additive Robust Ordinal Regression for urban and territorial planning: an application for siting an urban waste landfill," Annals of Operations Research, Springer, vol. 245(1), pages 427-456, October.
    2. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    3. Kadziński, Miłosz & Cinelli, Marco & Ciomek, Krzysztof & Coles, Stuart R. & Nadagouda, Mallikarjuna N. & Varma, Rajender S. & Kirwan, Kerry, 2018. "Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis," European Journal of Operational Research, Elsevier, vol. 264(2), pages 472-490.
    4. Eyke Hüllermeier & Roman Słowiński, 2024. "Preference learning and multiple criteria decision aiding: differences, commonalities, and synergies–part I," 4OR, Springer, vol. 22(2), pages 179-209, June.
    5. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    6. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    7. Haag, Fridolin & Lienert, Judit & Schuwirth, Nele & Reichert, Peter, 2019. "Identifying non-additive multi-attribute value functions based on uncertain indifference statements," Omega, Elsevier, vol. 85(C), pages 49-67.
    8. Guo, Mengzhuo & Liao, Xiuwu & Liu, Jiapeng & Zhang, Qingpeng, 2020. "Consumer preference analysis: A data-driven multiple criteria approach integrating online information," Omega, Elsevier, vol. 96(C).
    9. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    10. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    11. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    12. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    13. Barbati, Maria & Greco, Salvatore & Lami, Isabella M., 2024. "The Deck-of-cards-based Ordinal Regression method and its application for the development of an ecovillage," European Journal of Operational Research, Elsevier, vol. 319(3), pages 845-861.
    14. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    15. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.
    16. Pelegrina, Guilherme Dean & Duarte, Leonardo Tomazeli & Grabisch, Michel & Romano, João Marcos Travassos, 2020. "The multilinear model in multicriteria decision making: The case of 2-additive capacities and contributions to parameter identification," European Journal of Operational Research, Elsevier, vol. 282(3), pages 945-956.
    17. Paul Alain Kaldjob Kaldjob & Brice Mayag & Denis Bouyssou, 2023. "On the interpretation of the interaction index between criteria in a Choquet integral model," Post-Print hal-03766372, HAL.
    18. Abastante, Francesca & Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio & Lami, Isabella M., 2018. "Choice architecture for architecture choices: Evaluating social housing initiatives putting together a parsimonious AHP methodology and the Choquet integral," Land Use Policy, Elsevier, vol. 78(C), pages 748-762.
    19. Volker Kuppelwieser & Fouad Ben Abdelaziz & Olfa Meddeb, 2020. "Unstable interactions in customers’ decision making: an experimental proof," Annals of Operations Research, Springer, vol. 294(1), pages 479-499, November.
    20. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:24:y:2025:i:1:d:10.1007_s10700-025-09438-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.