IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v33y2021i4d10.1007_s10696-020-09402-7.html
   My bibliography  Save this article

Demand modelling for emergency medical service system with multiple casualties cases: k-inflated mixture regression model

Author

Listed:
  • Hyunjin Lee

    (KAIST)

  • Taesik Lee

    (KAIST)

Abstract

In most of the literature on emergency medical service (EMS) system design and analysis, arrivals of EMS calls are assumed to follow Poisson process. However, it is not uncommon for real-world EMS systems to experience batch arrivals of EMS requests, where a single call involves more than one patient. Properly capturing such batch arrivals is needed to enhance the quality of analyses, thereby improving the fidelity of a resulting system design. This paper proposes a spatio-temporal demand model that incorporates batch arrivals of EMS calls. Specifically, we construct a spatio-temporal compound Poisson process which consists of a call arrival model and call size model. We build our call arrival model by combining two models available in the existing EMS demand modeling literature—artificial neural network and spatio-temporal Gaussian mixture model. For the call size model, we develop a k-inflated mixture regression model. This model reflects the characteristics of EMS call arrivals that most calls involve one patient while some calls involve multiple patients. The utility of the proposed EMS demand model is illustrated by a probabilistic ambulance location model, where we show ignoring batch arrivals leads to overestimation of ambulance availability.

Suggested Citation

  • Hyunjin Lee & Taesik Lee, 2021. "Demand modelling for emergency medical service system with multiple casualties cases: k-inflated mixture regression model," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 1090-1115, December.
  • Handle: RePEc:spr:flsman:v:33:y:2021:i:4:d:10.1007_s10696-020-09402-7
    DOI: 10.1007/s10696-020-09402-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-020-09402-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-020-09402-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Goldberg, Jeffrey & Dietrich, Robert & Ming Chen, Jen & Mitwasi, M. George & Valenzuela, Terry & Criss, Elizabeth, 1990. "Validating and applying a model for locating emergency medical vehicles in Tuczon, AZ," European Journal of Operational Research, Elsevier, vol. 49(3), pages 308-324, December.
    3. Felix Papier & Ulrich W. Thonemann, 2008. "Queuing Models for Sizing and Structuring Rental Fleets," Transportation Science, INFORMS, vol. 42(3), pages 302-317, August.
    4. Inkyung Sung & Taesik Lee, 2018. "Erratum to: Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 953-953, December.
    5. Richard C. Larson, 1975. "Approximating the Performance of Urban Emergency Service Systems," Operations Research, INFORMS, vol. 23(5), pages 845-868, October.
    6. Repede, John F. & Bernardo, John J., 1994. "Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky," European Journal of Operational Research, Elsevier, vol. 75(3), pages 567-581, June.
    7. J. P. Jarvis, 1985. "Approximating the Equilibrium Behavior of Multi-Server Loss Systems," Management Science, INFORMS, vol. 31(2), pages 235-239, February.
    8. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    9. Fujiwara, Okitsugu & Makjamroen, Thanet & Gupta, Kapil Kumar, 1987. "Ambulance deployment analysis: A case study of Bangkok," European Journal of Operational Research, Elsevier, vol. 31(1), pages 9-18, July.
    10. Hyeon-Woo Kang & Hang-Bong Kang, 2017. "Prediction of crime occurrence from multi-modal data using deep learning," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    11. M Gendreau & G Laporte & F Semet, 2006. "The maximal expected coverage relocation problem for emergency vehicles," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 22-28, January.
    12. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    13. Furman, Edward, 2007. "On the convolution of the negative binomial random variables," Statistics & Probability Letters, Elsevier, vol. 77(2), pages 169-172, January.
    14. J L Vile & J W Gillard & P R Harper & V A Knight, 2012. "Predicting ambulance demand using singular spectrum analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(11), pages 1556-1565, November.
    15. Susan Budge & Armann Ingolfsson & Erhan Erkut, 2009. "Technical Note---Approximating Vehicle Dispatch Probabilities for Emergency Service Systems with Location-Specific Service Times and Multiple Units per Location," Operations Research, INFORMS, vol. 57(1), pages 251-255, February.
    16. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    17. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    18. Nabil Channouf & Pierre L’Ecuyer & Armann Ingolfsson & Athanassios Avramidis, 2007. "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Management Science, Springer, vol. 10(1), pages 25-45, February.
    19. Ricardo D. Kamenetzky & Larry J. Shuman & Harvey Wolfe, 1982. "Estimating Need and Demand for Prehospital Care," Operations Research, INFORMS, vol. 30(6), pages 1148-1167, December.
    20. Puig, Pedro & Valero, Jordi, 2006. "Count Data Distributions: Some Characterizations With Applications," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 332-340, March.
    21. Schmid, Verena, 2012. "Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 611-621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip Cammin & Jingjing Yu & Stefan Voß, 2023. "Tiered prediction models for port vessel emissions inventories," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 142-169, March.
    2. Anna Borucka, 2023. "Seasonal Methods of Demand Forecasting in the Supply Chain as Support for the Company’s Sustainable Growth," Sustainability, MDPI, vol. 15(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    3. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    4. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    5. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    6. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    7. Susana Baptista & Rui Oliveira, 2012. "A case study on the application of an approximated hypercube model to emergency medical systems management," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 559-581, December.
    8. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    9. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    10. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    11. Kenneth C. Chong & Shane G. Henderson & Mark E. Lewis, 2016. "The Vehicle Mix Decision in Emergency Medical Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 347-360, July.
    12. Iannoni, Ana P. & Morabito, Reinaldo, 2023. "A review on hypercube queuing model's extensions for practical applications," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    13. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    14. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    15. Thije van Barneveld, 2016. "The Minimum Expected Penalty Relocation Problem for the Computation of Compliance Tables for Ambulance Vehicles," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 370-384, May.
    16. Soovin Yoon & Laura A. Albert & Veronica M. White, 2021. "A Stochastic Programming Approach for Locating and Dispatching Two Types of Ambulances," Transportation Science, INFORMS, vol. 55(2), pages 275-296, March.
    17. Sun Hoon Kim & Young Hoon Lee, 2016. "Iterative optimization algorithm with parameter estimation for the ambulance location problem," Health Care Management Science, Springer, vol. 19(4), pages 362-382, December.
    18. Iannoni, Ana Paula & Chiyoshi, Fernando & Morabito, Reinaldo, 2015. "A spatially distributed queuing model considering dispatching policies with server reservation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 49-66.
    19. van Barneveld, Thije & Jagtenberg, Caroline & Bhulai, Sandjai & van der Mei, Rob, 2018. "Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation," Socio-Economic Planning Sciences, Elsevier, vol. 62(C), pages 129-142.
    20. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:33:y:2021:i:4:d:10.1007_s10696-020-09402-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.