The joint distribution of Parisian and hitting times of Brownian motion with application to Parisian option pricing
Author
Abstract
Suggested Citation
DOI: 10.1007/s00780-016-0302-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Céline Labart & Jérôme Lelong, 2009. "Pricing Parisian options using Laplace transforms," Post-Print hal-00776703, HAL.
- Dassios, Angelos & Wu, Shanle, 2011. "Brownian excursions in a corridor and related Parisian options," LSE Research Online Documents on Economics 32042, London School of Economics and Political Science, LSE Library.
- Joseph Abate & Ward Whitt, 1995. "Numerical Inversion of Laplace Transforms of Probability Distributions," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 36-43, February.
- Marc Chesney & Laurent Gauthier, 2006. "American Parisian options," Finance and Stochastics, Springer, vol. 10(4), pages 475-506, December.
- Ning Cai & Nan Chen & Xiangwei Wan, 2010. "Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 412-437, May.
- J. Anderluh & J. Weide, 2009. "Double-sided Parisian option pricing," Finance and Stochastics, Springer, vol. 13(2), pages 205-238, April.
- Marco Avellaneda & Lixin Wu, 1999. "Pricing Parisian-Style Options With A Lattice Method," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-16.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dassios, Angelos & Li, Luting, 2020. "Explicit asymptotic on first passage times of diffusion processes," LSE Research Online Documents on Economics 103087, London School of Economics and Political Science, LSE Library.
- Gongqiu Zhang & Lingfei Li, 2023. "A general approach for Parisian stopping times under Markov processes," Finance and Stochastics, Springer, vol. 27(3), pages 769-829, July.
- Angelos Dassios & Luting Li, 2018. "Explicit Asymptotics on First Passage Times of Diffusion Processes," Papers 1806.08161, arXiv.org.
- Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
- Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Parisian Stopping Times under Markov Processes," Papers 2107.06605, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dassios, Angelos & Zhang, You You, 2016. "The joint distribution of Parisian and hitting times of the Brownian motion with application to Parisian option pricing," LSE Research Online Documents on Economics 64959, London School of Economics and Political Science, LSE Library.
- Dassios, Angelos & Lim, Jia Wei, 2013. "Parisian option pricing: a recursive solution for the density of the Parisian stopping time," LSE Research Online Documents on Economics 58985, London School of Economics and Political Science, LSE Library.
- Yangyang Zhuang & Pan Tang, 2023. "Pricing of American Parisian option as executive option based on the least‐squares Monte Carlo approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1469-1496, October.
- Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
- C. E. Phelan & D. Marazzina & G. Germano, 2020.
"Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities,"
Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
- Phelan, C. E. & Marazzina, D. & Germano, G., 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," LSE Research Online Documents on Economics 103780, London School of Economics and Political Science, LSE Library.
- Carolyn E. Phelan & Daniele Marazzina & Guido Germano, 2021. "Pricing methods for $\alpha$-quantile and perpetual early exercise options based on Spitzer identities," Papers 2106.06030, arXiv.org.
- Céline Labart & Jérôme Lelong, 2009. "Pricing Parisian options using Laplace transforms," Post-Print hal-00776703, HAL.
- Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Parisian Stopping Times under Markov Processes," Papers 2107.06605, arXiv.org.
- Angelos Dassios & Junyi Zhang, 2020. "Parisian Time of Reflected Brownian Motion with Drift on Rays and Its Application in Banking," Risks, MDPI, vol. 8(4), pages 1-14, December.
- Gongqiu Zhang & Lingfei Li, 2023. "A general approach for Parisian stopping times under Markov processes," Finance and Stochastics, Springer, vol. 27(3), pages 769-829, July.
- Angelos Dassios & Shanle Wu, 2010. "Perturbed Brownian motion and its application to Parisian option pricing," Finance and Stochastics, Springer, vol. 14(3), pages 473-494, September.
- Deng, Jie & Qin, Zhongfeng, 2021. "On Parisian option pricing for uncertain currency model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
- Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- David H Collins & Richard L Warr & Aparna V Huzurbazar, 2013. "An introduction to statistical flowgraph models for engineering systems," Journal of Risk and Reliability, , vol. 227(5), pages 461-470, October.
- Harrison, Peter G., 2024. "On the numerical solution of functional equations with application to response time distributions," Applied Mathematics and Computation, Elsevier, vol. 472(C).
- Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
- Yingchun Deng & Xuan Huang & Ya Huang & Xuyan Xiang & Jieming Zhou, 2020. "n-Dimensional Laplace Transforms of Occupation Times for Pre-Exit Diffusion Processes," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 345-360, March.
- Dirk Becherer & Todor Bilarev & Peter Frentrup, 2018. "Optimal liquidation under stochastic liquidity," Finance and Stochastics, Springer, vol. 22(1), pages 39-68, January.
More about this item
Keywords
Parisian options; Excursion time; Three-state semi-Markov model; Laplace transform;All these keywords.
JEL classification:
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:20:y:2016:i:3:d:10.1007_s00780-016-0302-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.