IDEAS home Printed from https://ideas.repec.org/a/spr/eurpop/v39y2023i1d10.1007_s10680-023-09675-2.html
   My bibliography  Save this article

Can We Rely on Projections of the Immigrant Population? The Case of Norway

Author

Listed:
  • Nico Keilman

    (University of Oslo)

Abstract

Demographic forecasters must be realistic about how well they can predict future populations, and it is important that they include estimates of uncertainty in their forecasts. Here we focus on the future development of the immigrant population of Norway and their Norwegian-born children (“second generation”), grouped by three categories of country background: 1. West European countries plus the United States, Canada, Australia, and New Zealand; 2. Central and East European countries that are members of the European Union; 3. other countries. We show how to use a probabilistic forecast to assess the reliability of projections of the immigrant population and their children. We employ the method of random shares using data for immigrants and their children for 2000–2021. We model their age- and sex-specific shares relative to the whole population. Relational models are used for the age patterns in these shares, and time series models to extrapolate the parameters of the age patterns. We compute a probabilistic forecast for six population sub-groups with immigration background, and one for non-immigrants. The probabilistic forecast is calibrated against Statistics Norway’s official population projection. We find that a few population trends are quite certain: strong increases to 2060 in the size of the immigrant population (more specifically those who belong to country group 3) and of Norwegian-born children of immigrants. However, prediction intervals around the forecasts of immigrants and their children by one-year age groups are so wide that these forecasts are not reliable.

Suggested Citation

  • Nico Keilman, 2023. "Can We Rely on Projections of the Immigrant Population? The Case of Norway," European Journal of Population, Springer;European Association for Population Studies, vol. 39(1), pages 1-26, December.
  • Handle: RePEc:spr:eurpop:v:39:y:2023:i:1:d:10.1007_s10680-023-09675-2
    DOI: 10.1007/s10680-023-09675-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10680-023-09675-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10680-023-09675-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrizio Vanella & Moritz Heß & Christina B. Wilke, 2020. "A probabilistic projection of beneficiaries of long-term care insurance in Germany by severity of disability," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 943-974, June.
    2. Joop de Beer, 2011. "A new relational method for smoothing and projecting age-specific fertility rates: TOPALS," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(18), pages 409-454.
    3. Joop de Beer, 2012. "Smoothing and projecting age-specific probabilities of death by TOPALS," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(20), pages 543-592.
    4. Nico Keilman & Arve Hetland & Dinh Quang Pham, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454.
    5. Johann Fuchs & Doris Söhnlein & Brigitte Weber & Enzo Weber, 2018. "Stochastic Forecasting of Labor Supply and Population: An Integrated Model," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(1), pages 33-58, February.
    6. Tom Wilson, 2013. "The sequential propensity household projection model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(24), pages 681-712.
    7. Juha Alho & Nico Keilman, 2010. "On future household structure," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 117-143, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigurd Dyrting & Abraham Flaxman & Ethan Sharygin, 2022. "Reconstruction of age distributions from differentially private census data," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(6), pages 2311-2329, December.
    2. Bernard Baffour & James Raymer, 2019. "Estimating multiregional survivorship probabilities for sparse data: An application to immigrant populations in Australia, 1981–2011," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(18), pages 463-502.
    3. Sigurd Dyrting, 2020. "Smoothing migration intensities with P-TOPALS," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 43(55), pages 1607-1650.
    4. Keilman, Nico, 2016. "Household forecasting: Preservation of age patterns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 726-735.
    5. Nico Keilman, 2017. "A combined Brass-random walk approach to probabilistic household forecasting: Denmark, Finland, and the Netherlands, 2011–2041," Journal of Population Research, Springer, vol. 34(1), pages 17-43, March.
    6. Vanella, Patrizio & Deschermeier, Philipp, 2018. "A Probabilistic Cohort-Component Model for Population Forecasting - The Case of Germany," Hannover Economic Papers (HEP) dp-638, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    7. Patrizio Vanella & Philipp Deschermeier & Christina B. Wilke, 2020. "An Overview of Population Projections—Methodological Concepts, International Data Availability, and Use Cases," Forecasting, MDPI, vol. 2(3), pages 1-18, September.
    8. Lanza Queiroz, Bernardo & Lobo Alves Ferreira, Matheus, 2021. "The evolution of labor force participation and the expected length of retirement in Brazil," The Journal of the Economics of Ageing, Elsevier, vol. 18(C).
    9. Gianni Corsetti & Marco Marsili, 2013. "Previsioni stocastiche della popolazione nell’ottica di un Istituto Nazionale di Statistica," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(2-3), pages 5-29.
    10. Nico Keilman, 2020. "Evaluating Probabilistic Population Forecasts," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 49-64.
    11. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    12. Jeff Tayman & Stanley Smith & Jeffrey Lin, 2007. "Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(3), pages 347-369, June.
    13. Raffaella Rubino & Arjeta Veshi, 2023. "Changing family models. the case of the Puglia region," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 77(2), pages 132-142, April-Jun.
    14. Urszula Ala-Karvia & Marta Hozer-Koćmiel & Sandra Misiak-Kwit & Barbara Staszko, 2018. "Is Poland Becoming Nordic? Changing Trends In Household Structures In Poland And Finland With The Emphasis On People Living Alone," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 725-742, December.
    15. Kashnitsky, Ilya, 2023. "Non-survival to pension age in Denmark and Sweden: a sub-national investigation," OSF Preprints y9ke4, Center for Open Science.
    16. Jeff Tayman, 2011. "Assessing Uncertainty in Small Area Forecasts: State of the Practice and Implementation Strategy," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(5), pages 781-800, October.
    17. Guy Abel & Jakub Bijak & Jonathan J. Forster & James Raymer & Peter W F Smith & Jackie S.T. Wong, 2013. "Integrating uncertainty in time series population forecasts: An illustration using a simple projection model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(43), pages 1187-1226.
    18. Chartouni Carole & Holzmann Robert & Paez Gustavo N., 2020. "Not everyone is engaged: an innovative approach to measure engagement levels on the labor market," IZA Journal of Labor Policy, Sciendo & Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 10(1), pages 1-25, March.
    19. Arkadiusz Wiśniowski & Peter Smith & Jakub Bijak & James Raymer & Jonathan Forster, 2015. "Bayesian Population Forecasting: Extending the Lee-Carter Method," Demography, Springer;Population Association of America (PAA), vol. 52(3), pages 1035-1059, June.
    20. Tom Wilson, 2016. "Visualising the demographic factors which shape population age structure," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 35(29), pages 867-890.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurpop:v:39:y:2023:i:1:d:10.1007_s10680-023-09675-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.