IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v98y2025i1d10.1140_epjb_s10051-024-00841-x.html
   My bibliography  Save this article

Spatial and fine energy structure of indirect exciton

Author

Listed:
  • V. P. Dzyuba

    (Institute of Automation and Control Processes of FEB RAS)

  • O. B. Vitrik

    (Institute of Automation and Control Processes of FEB RAS)

Abstract

Quantum states of a spatially indirect exciton (IX), including its binding energy, are largely determined by the geometry of the spatial quantum structure consisting of (IX) and the interface (IXI). Unfortunately, this fact has been poorly studied both experimentally and theoretically. In this paper, the parameters of the IXI geometry and their effect on the IX binding energy spectrum are analytically investigated for the first time. For this purpose, the potential of the Coulomb interaction of an electron and a hole is determined using the image method. It is shown that the geometry parameters are quantized, and the effective permittivity of the interface becomes dependent on the orbital and magnetic quantum numbers of IX. A nonlinear dependence of the IX binding energy on the geometric parameters is observed. All these manifestations of the geometry are accessible to experimental observation. Each geometry has its own quantum states. This opens up the possibility of using IXI in exciton spectroscopy of the interface layer. The controllability of the IXI geometry by polarized light allows us to hope for using quantum geometric states of IX as qubits. In this work, various geometric states IX of two planar heterostructures SiO2/Si3N4 and GaAs/CdSe were modeled as an example. Graphical abstract

Suggested Citation

  • V. P. Dzyuba & O. B. Vitrik, 2025. "Spatial and fine energy structure of indirect exciton," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 98(1), pages 1-9, January.
  • Handle: RePEc:spr:eurphb:v:98:y:2025:i:1:d:10.1140_epjb_s10051-024-00841-x
    DOI: 10.1140/epjb/s10051-024-00841-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00841-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00841-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziliang Ye & Ting Cao & Kevin O’Brien & Hanyu Zhu & Xiaobo Yin & Yuan Wang & Steven G. Louie & Xiang Zhang, 2014. "Probing excitonic dark states in single-layer tungsten disulphide," Nature, Nature, vol. 513(7517), pages 214-218, September.
    2. E. V. Calman & M. M. Fogler & L. V. Butov & S. Hu & A. Mishchenko & A. K. Geim, 2018. "Indirect excitons in van der Waals heterostructures at room temperature," Nature Communications, Nature, vol. 9(1), pages 1-5, December.
    3. M. M. Fogler & L. V. Butov & K. S. Novoselov, 2014. "High-temperature superfluidity with indirect excitons in van der Waals heterostructures," Nature Communications, Nature, vol. 5(1), pages 1-5, December.
    4. Ryo Mori & Samuel Ciocys & Kazuaki Takasan & Ping Ai & Kayla Currier & Takahiro Morimoto & Joel E. Moore & Alessandra Lanzara, 2023. "Spin-polarized spatially indirect excitons in a topological insulator," Nature, Nature, vol. 614(7947), pages 249-255, February.
    5. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwen Zhou & E. A. Szwed & D. J. Choksy & L. H. Fowler-Gerace & L. V. Butov, 2024. "Long-distance decay-less spin transport in indirect excitons in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Xuezhi Ma & Kaushik Kudtarkar & Yixin Chen & Preston Cunha & Yuan Ma & Kenji Watanabe & Takashi Taniguchi & Xiaofeng Qian & M. Cynthia Hipwell & Zi Jing Wong & Shoufeng Lan, 2022. "Coherent momentum control of forbidden excitons," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yuri Saida & Thomas Gauthier & Hiroo Suzuki & Satoshi Ohmura & Ryo Shikata & Yui Iwasaki & Godai Noyama & Misaki Kishibuchi & Yuichiro Tanaka & Wataru Yajima & Nicolas Godin & Gaël Privault & Tomoharu, 2024. "Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ying-Xin Ma & Xue-Dong Wang, 2024. "Directional self-assembly of organic vertically superposed nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Kai Fan & Heng Jin & Bing Huang & Guijing Duan & Rong Yu & Zhen-Yu Liu & Hui-Nan Xia & Li-Si Liu & Yao Zhang & Tao Xie & Qiao-Yin Tang & Gang Chen & Wen-Hao Zhang & F. C. Chen & X. Luo & W. J. Lu & Y., 2024. "Artificial superconducting Kondo lattice in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Cosme G. Ayani & Michele Pisarra & Iván M. Ibarburu & Clara Rebanal & Manuela Garnica & Fabián Calleja & Fernando Martín & Amadeo L. Vázquez de Parga, 2024. "Electron delocalization in a 2D Mott insulator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Cheng Hu & Jiajun Chen & Xianliang Zhou & Yufeng Xie & Xinyue Huang & Zhenghan Wu & Saiqun Ma & Zhichun Zhang & Kunqi Xu & Neng Wan & Yueheng Zhang & Qi Liang & Zhiwen Shi, 2024. "Collapse of carbon nanotubes due to local high-pressure from van der Waals encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Eli Gerber & Steven B. Torrisi & Sara Shabani & Eric Seewald & Jordan Pack & Jennifer E. Hoffman & Cory R. Dean & Abhay N. Pasupathy & Eun-Ah Kim, 2023. "High-throughput ab initio design of atomic interfaces using InterMatch," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Qiang Gao & Jin Mo Bok & Ping Ai & Jing Liu & Hongtao Yan & Xiangyu Luo & Yongqing Cai & Cong Li & Yang Wang & Chaohui Yin & Hao Chen & Genda Gu & Fengfeng Zhang & Feng Yang & Shenjin Zhang & Qinjun P, 2024. "ARPES detection of superconducting gap sign in unconventional superconductors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Yu Ji & Guang-Ping Hao & Yong-Tao Tan & Wenqi Xiong & Yu Liu & Wenzhe Zhou & Dai-Ming Tang & Renzhi Ma & Shengjun Yuan & Takayoshi Sasaki & Marcelo Lozada-Hidalgo & Andre K. Geim & Pengzhan Sun, 2024. "High proton conductivity through angstrom-porous titania," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Bohayra Mortazavi & Timon Rabczuk, 2018. "Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors," Energies, MDPI, vol. 11(6), pages 1-10, June.
    16. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Boxuan Yang & Bibek Bhujel & Daniel G. Chica & Evan J. Telford & Xavier Roy & Fatima Ibrahim & Mairbek Chshiev & Maxen Cosset-Chéneau & Bart J. van Wees, 2024. "Electrostatically controlled spin polarization in Graphene-CrSBr magnetic proximity heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Xiang-Rui Liu & Hanbin Deng & Yuntian Liu & Zhouyi Yin & Congrun Chen & Yu-Peng Zhu & Yichen Yang & Zhicheng Jiang & Zhengtai Liu & Mao Ye & Dawei Shen & Jia-Xin Yin & Kedong Wang & Qihang Liu & Yue Z, 2023. "Spectroscopic signature of obstructed surface states in SrIn2P2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Xinrui Yang & Lu Han & Hongkai Ning & Shaoqing Xu & Bo Hao & Yi-Chi Li & Taotao Li & Yuan Gao & Shengjun Yan & Yueying Li & Chenyi Gu & Weisheng Li & Zhengbin Gu & Yingzhuo Lun & Yi Shi & Jian Zhou & , 2024. "Ultralow-pressure-driven polarization switching in ferroelectric membranes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:98:y:2025:i:1:d:10.1140_epjb_s10051-024-00841-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.