IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v43y2023i4d10.1007_s10669-023-09926-x.html
   My bibliography  Save this article

Study on the evaluation method and system of urban resilience in China

Author

Listed:
  • Hong Huang

    (Tsinghua University)

  • Shiwei Zhou

    (Tsinghua University)

  • Wei Wang

    (Tsinghua University)

  • Ruiqi Li

    (Urban Water and Infrastructure Institute, China Academy of Urban Planning and Design)

  • Tingxin Qin

    (China National Institute of Standardization)

  • Fucai Yu

    (Beijing Academy of Emergency Management Science and Technology)

Abstract

With the rapid development of cities and urban agglomerations, the operation of cities is becoming increasingly complicated, and the risks of urban safety are expanding, which make cities prone to become the place where disasters and accidents occur. Resilient cities can better adapt to changing environment, cope with uncertain risks, and achieve safe and sustainable development. In this paper, the urban resilience model and evaluation techniques were studied, quantitative analysis model of urban resilience was constructed. An urban resilience multi-dimensional evaluation index system and evaluation methods and criteria suitable for Chinese cities were established. The method of urban resilience analysis and optimization simulation was proposed, which included mechanism analysis, scenario construction, and strategy optimization. Based on GIS system, the resilient city evaluation and comprehensive integrated management platform were developed, and demonstration applications were carried out. The results provide favorable scientific and technological support for decision-making of urban safety management and construction of resilient cities.

Suggested Citation

  • Hong Huang & Shiwei Zhou & Wei Wang & Ruiqi Li & Tingxin Qin & Fucai Yu, 2023. "Study on the evaluation method and system of urban resilience in China," Environment Systems and Decisions, Springer, vol. 43(4), pages 735-745, December.
  • Handle: RePEc:spr:envsyd:v:43:y:2023:i:4:d:10.1007_s10669-023-09926-x
    DOI: 10.1007/s10669-023-09926-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-023-09926-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-023-09926-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shafieezadeh, Abdollah & Ivey Burden, Lindsay, 2014. "Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 207-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    2. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    3. Pitilakis, Kyriazis & Argyroudis, Sotiris & Fotopoulou, Stavroula & Karafagka, Stella & Kakderi, Kalliopi & Selva, Jacopo, 2019. "Application of stress test concepts for port infrastructures against natural hazards. The case of Thessaloniki port in Greece," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 240-257.
    4. Shuai Lin & Limin Jia & Hengrun Zhang & Yanhui Wang, 2021. "A method for assessing resilience of high-speed EMUs considering a network-based system topology and performance data," Journal of Risk and Reliability, , vol. 235(5), pages 877-895, October.
    5. Li, Zhaolong & Jin, Chun & Hu, Pan & Wang, Cong, 2019. "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 503-514.
    6. Georges Irankunda & Wei Zhang & Muhirwa Fernand & Jianrong Zhang, 2024. "Assessing the Resilience of Critical Infrastructure Facilities toward a Holistic and Theoretical Approach: A Multi-Scenario Evidence and Case Study," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
    7. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    8. Noah C. Dormady & Robert T. Greenbaum & Kim A. Young, 2021. "An experimental investigation of resilience decision making in repeated disasters," Environment Systems and Decisions, Springer, vol. 41(4), pages 556-576, December.
    9. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    10. Bukowski, L., 2016. "System of systems dependability – Theoretical models and applications examples," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 76-92.
    11. Xin Fu & Xinhao Wang, 2018. "Developing an integrative urban resilience capacity index for plan making," Environment Systems and Decisions, Springer, vol. 38(3), pages 367-378, September.
    12. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    13. Asadabadi, Ali & Miller-Hooks, Elise, 2020. "Maritime port network resiliency and reliability through co-opetition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    14. Cremen, Gemma & Bozzoni, Francesca & Pistorio, Silvia & Galasso, Carmine, 2022. "Developing a risk-informed decision-support system for earthquake early warning at a critical seaport," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    15. Mussone, Lorenzo & Aranda Salgado, Valeria J. & Notari, Roberto, 2024. "Evaluation of robustness in underground networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 651(C).
    16. Zhen, Lu & Lin, Shumin & Zhou, Chenhao, 2022. "Green port oriented resilience improvement for traffic-power coupled networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Li, Yulong & Zhang, Chi & Jia, Chuanzhou & Li, Xiaodong & Zhu, Yimin, 2019. "Joint optimization of workforce scheduling and routing for restoring a disrupted critical infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Wang, Ke & Liu, Jinfeng & Tian, Lai & Tan, Xianfeng & Peng, Guansheng & Qin, Tianwen & Wu, Jun, 2022. "Analyzing vulnerability of optical fiber network considering recoverability," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    19. Tao Ji & Yanhong Yao & Yue Dou & Shejun Deng & Shijun Yu & Yunqiang Zhu & Huajun Liao, 2022. "The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    20. Naseh Moghanlou, Lida & Di Maio, Francesco & Zio, Enrico, 2024. "Probabilistic scenario analysis of integrated road-power infrastructures with hybrid fleets of EVs and ICVs," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:43:y:2023:i:4:d:10.1007_s10669-023-09926-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.