IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v35y2015i2d10.1007_s10669-015-9548-3.html
   My bibliography  Save this article

Quantifying coastal system resilience for the US Army Corps of Engineers

Author

Listed:
  • Julie Dean Rosati

    (US Army Corps of Engineers
    Engineer Research and Development Center)

  • Katherine Flynn Touzinsky

    (US Army Corps of Engineers
    Engineer Research and Development Center)

  • W. Jeff Lillycrop

    (US Army Corps of Engineers)

Abstract

The US Army Corps of Engineers (USACE) is responsible for the management of the Nation’s water resource infrastructure and is presently challenged to continue the safe operation and management of that aging infrastructure. These challenges span from changes in climate patterns to increased environmental concerns, greater coastal population densities and associated infrastructure, and limited budgets. One way to mitigate these issues is the concept of resilience. In 2013, the Coastal Engineering Research Board (CERB) began to define resilience and understand its relation to coastal water infrastructure needs. This work was a step forward in facilitating the USACE’s integration of resilience into coastal engineering assessment and project design. The CERB has defined resilience using the four concepts of “prepare,” “resist,” “recover,” and “adapt.” These four concepts are utilized in a system-wide approach that encompasses not only water resource engineered infrastructure (that the USACE builds and manages), but also considers community and ecological infrastructure. Using this framework and literature from previous federal and academic studies, three methods were developed that incorporate different levels of expert and data-driven assessment. Two of these methods, herein named Tier 1 and Tier 3, were tested in a pilot study in Jamaica Bay, NY. Building off of the results from Jamaica Bay, Tier 1 is being refined and Tier 2 is in development.

Suggested Citation

  • Julie Dean Rosati & Katherine Flynn Touzinsky & W. Jeff Lillycrop, 2015. "Quantifying coastal system resilience for the US Army Corps of Engineers," Environment Systems and Decisions, Springer, vol. 35(2), pages 196-208, June.
  • Handle: RePEc:spr:envsyd:v:35:y:2015:i:2:d:10.1007_s10669-015-9548-3
    DOI: 10.1007/s10669-015-9548-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-015-9548-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-015-9548-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cate Fox-Lent & Matthew E. Bates & Igor Linkov, 2015. "A matrix approach to community resilience assessment: an illustrative case at Rockaway Peninsula," Environment Systems and Decisions, Springer, vol. 35(2), pages 209-218, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cate Fox-Lent & Matthew E. Bates & Igor Linkov, 2015. "A matrix approach to community resilience assessment: an illustrative case at Rockaway Peninsula," Environment Systems and Decisions, Springer, vol. 35(2), pages 209-218, June.
    2. Elisabeth Vogel & Zoya Dyka & Dan Klann & Peter Langendörfer, 2021. "Resilience in the Cyberworld: Definitions, Features and Models," Future Internet, MDPI, vol. 13(11), pages 1-18, November.
    3. Jyri Mustajoki & Mika Marttunen, 2019. "Improving resilience of reservoir operation in the context of watercourse regulation in Finland," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 359-386, November.
    4. Sabrina Larkin & Cate Fox-Lent & Daniel A. Eisenberg & Benjamin D. Trump & Sean Wallace & Colin Chadderton & Igor Linkov, 2015. "Benchmarking agency and organizational practices in resilience decision making," Environment Systems and Decisions, Springer, vol. 35(2), pages 185-195, June.
    5. Igor Linkov & Cate Fox‐Lent & Laura Read & Craig R. Allen & James C. Arnott & Emanuele Bellini & Jon Coaffee & Marie‐Valentine Florin & Kirk Hatfield & Iain Hyde & William Hynes & Aleksandar Jovanovic, 2018. "Tiered Approach to Resilience Assessment," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1772-1780, September.
    6. Igor Linkov & Sabrina Larkin & James H. Lambert, 2015. "Concepts and approaches to resilience in a variety of governance and regulatory domains," Environment Systems and Decisions, Springer, vol. 35(2), pages 183-184, June.
    7. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhixing Ma & Shili Guo & Xin Deng & Dingde Xu, 2021. "Community resilience and resident's disaster preparedness: evidence from China's earthquake-stricken areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 567-591, August.
    2. Giada Feletti & Mariachiara Piraina & Boris Petrenj & Paolo Trucco, 2022. "Collaborative capability building for critical infrastructure resilience: assessment and selection of good practices," Environment Systems and Decisions, Springer, vol. 42(2), pages 207-233, June.
    3. Jesse M. Keenan, 2018. "Regional resilience trust funds: an exploratory analysis for leveraging insurance surcharges," Environment Systems and Decisions, Springer, vol. 38(1), pages 118-139, March.
    4. Hoang Long Nguyen & Rajendra Akerkar, 2020. "Modelling, Measuring, and Visualising Community Resilience: A Systematic Review," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    5. R. Cantelmi & G. Di Gravio & R. Patriarca, 2021. "Reviewing qualitative research approaches in the context of critical infrastructure resilience," Environment Systems and Decisions, Springer, vol. 41(3), pages 341-376, September.
    6. Liang Wang & Xiaolong Xue & Yuanxin Zhang & Xiaowei Luo, 2018. "Exploring the Emerging Evolution Trends of Urban Resilience Research by Scientometric Analysis," IJERPH, MDPI, vol. 15(10), pages 1-29, October.
    7. Marco Cinelli & Matteo Spada & Wansub Kim & Yiwen Zhang & Peter Burgherr, 2021. "MCDA Index Tool: an interactive software to develop indices and rankings," Environment Systems and Decisions, Springer, vol. 41(1), pages 82-109, March.
    8. A. Jovanović & P. Klimek & O. Renn & R. Schneider & K. Øien & J. Brown & M. DiGennaro & Y. Liu & V. Pfau & M. Jelić & T. Rosen & B. Caillard & S. Chakravarty & P. Chhantyal, 2020. "Assessing resilience of healthcare infrastructure exposed to COVID-19: emerging risks, resilience indicators, interdependencies and international standards," Environment Systems and Decisions, Springer, vol. 40(2), pages 252-286, June.
    9. Aven, Terje, 2017. "How some types of risk assessments can support resilience analysis and management," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 536-543.
    10. Tran, Huy T. & Balchanos, Michael & Domerçant, Jean Charles & Mavris, Dimitri N., 2017. "A framework for the quantitative assessment of performance-based system resilience," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 73-84.
    11. Xin Fu & Xinhao Wang, 2018. "Developing an integrative urban resilience capacity index for plan making," Environment Systems and Decisions, Springer, vol. 38(3), pages 367-378, September.
    12. Ebrahim Karan & Sadegh Asgari, 2021. "Resilience of food, energy, and water systems to a sudden labor shortage," Environment Systems and Decisions, Springer, vol. 41(1), pages 63-81, March.
    13. Wood, Matthew D. & Wells, Emily M. & Rice, Glenn & Linkov, Igor, 2019. "Quantifying and mapping resilience within large organizations," Omega, Elsevier, vol. 87(C), pages 117-126.
    14. Laura A. Bakkensen & Cate Fox‐Lent & Laura K. Read & Igor Linkov, 2017. "Validating Resilience and Vulnerability Indices in the Context of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 37(5), pages 982-1004, May.
    15. Jyri Mustajoki & Mika Marttunen, 2019. "Improving resilience of reservoir operation in the context of watercourse regulation in Finland," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 359-386, November.
    16. Sally Naji & Julie Gwilliam, 2022. "The potentials of BREEAM communities in addressing the adaptive governance in theory and practice," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8287-8312, June.
    17. Max Leyerer & Marc-Oliver Sonneberg & Maximilian Heumann & Michael H. Breitner, 2019. "Decision support for sustainable and resilience-oriented urban parcel delivery," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 267-300, November.
    18. Craig R. Allen & Hannah E. Birge & Shannon Bartelt-Hunt & Rebecca A. Bevans & Jessica L. Burnett & Barbara A. Cosens & Ximing Cai & Ahjond S. Garmestani & Igor Linkov & Elizabeth A. Scott & Mark D. So, 2016. "Avoiding Decline: Fostering Resilience and Sustainability in Midsize Cities," Sustainability, MDPI, vol. 8(9), pages 1-24, August.
    19. Riffat Mahmood & Li Zhang & Guoqing Li & Munshi Khaledur Rahman, 2022. "Geo-based model of intrinsic resilience to climate change: an approach to nature-based solution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11969-11990, October.
    20. Pawel Gromek & Grzegorz Sobolewski, 2020. "Risk-Based Approach for Informing Sustainable Infrastructure Resilience Enhancement and Potential Resilience Implication in Terms of Emergency Service Perspective," Sustainability, MDPI, vol. 12(11), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:35:y:2015:i:2:d:10.1007_s10669-015-9548-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.