IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v43y2023i4d10.1007_s10669-023-09950-x.html
   My bibliography  Save this article

Indicator-based assessment of extreme threats (XTs) and their impacts on the resilience of geographical areas and critical infrastructures

Author

Listed:
  • A. Jovanović

    (Steinbeis EU-VRi: European Virtual Institute for Integrated Risk Management (EU-VRi)
    ETH Zurich – Risk Center)

  • H. Schernberg

    (ETH Zurich – Risk Center)

  • S. Brem

    (BABS - Bundesamt Für Bevölkerungsschutz)

  • S. Chakravarty

    (Steinbeis EU-VRi: European Virtual Institute for Integrated Risk Management (EU-VRi))

  • M. Jelić

    (Steinbeis EU-VRi: European Virtual Institute for Integrated Risk Management (EU-VRi))

Abstract

The paper proposes an approach for anticipating and dealing with future extreme threats (x-threats or XTs, e.g., due to climate change) and threats challenging the resilience of the affected geographical areas and their infrastructures. The approach relies on a new composite indicator (CIRIX—Critical Infrastructure Resilience Index for X-threats) that combines indicators characterizing a particular XT and indicators characterizing the resilience of a given infrastructure to that XT. CIRIX, therefore, provides a threat- and infrastructure-specific measure of resilience for a given XT. We quantify the extremeness of XTs using a sub-hierarchy of indicators, including not only increased intensity but also increased complexity, increased impacts, and other characteristics. To illustrate the use of CIRIX for stress testing, we construct a synthetic but plausible XT scenario based on a historical event, the 2005 flooding in the Swiss city of Lucerne. We analyze it using CIRIX to investigate the resilience of the area’s most critical infrastructures. The threat-and-resilience assessments were performed using the ResilienceTool. The approach allows to (a) enhance preparedness for XTs, (b) perform “what-if” analyses (e.g., by varying values of threat or resilience indicators), (c) optimize resilience-related decisions, (d) stress test the resilience of critical infrastructures, and (e) potentially use the analysis results for insurance purposes (e.g., using CIRIX for parametric insurance).

Suggested Citation

  • A. Jovanović & H. Schernberg & S. Brem & S. Chakravarty & M. Jelić, 2023. "Indicator-based assessment of extreme threats (XTs) and their impacts on the resilience of geographical areas and critical infrastructures," Environment Systems and Decisions, Springer, vol. 43(4), pages 599-624, December.
  • Handle: RePEc:spr:envsyd:v:43:y:2023:i:4:d:10.1007_s10669-023-09950-x
    DOI: 10.1007/s10669-023-09950-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-023-09950-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-023-09950-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cate Fox-Lent & Matthew E. Bates & Igor Linkov, 2015. "A matrix approach to community resilience assessment: an illustrative case at Rockaway Peninsula," Environment Systems and Decisions, Springer, vol. 35(2), pages 209-218, June.
    2. Bostick, T.P. & Connelly, E.B. & Lambert, J.H. & Linkov, I., 2018. "Resilience science, policy and investment for civil infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 19-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahaa Elboshy & Shinjiro Kanae & Mona Gamaleldin & Hany Ayad & Toshihiro Osaragi & Waleed Elbarki, 2019. "A framework for pluvial flood risk assessment in Alexandria considering the coping capacity," Environment Systems and Decisions, Springer, vol. 39(1), pages 77-94, March.
    2. Pawel Gromek & Grzegorz Sobolewski, 2020. "Risk-Based Approach for Informing Sustainable Infrastructure Resilience Enhancement and Potential Resilience Implication in Terms of Emergency Service Perspective," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    3. Zhixing Ma & Shili Guo & Xin Deng & Dingde Xu, 2021. "Community resilience and resident's disaster preparedness: evidence from China's earthquake-stricken areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 567-591, August.
    4. Mark C. Quigley & Januka Attanayake & Andrew King & Fabian Prideaux, 2020. "A multi-hazards earth science perspective on the COVID-19 pandemic: the potential for concurrent and cascading crises," Environment Systems and Decisions, Springer, vol. 40(2), pages 199-215, June.
    5. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    6. Jesse M. Keenan, 2018. "Regional resilience trust funds: an exploratory analysis for leveraging insurance surcharges," Environment Systems and Decisions, Springer, vol. 38(1), pages 118-139, March.
    7. Iaiani, Matteo & Tugnoli, Alessandro & Macini, Paolo & Cozzani, Valerio, 2021. "Outage and asset damage triggered by malicious manipulation of the control system in process plants," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Liang Wang & Xiaolong Xue & Yuanxin Zhang & Xiaowei Luo, 2018. "Exploring the Emerging Evolution Trends of Urban Resilience Research by Scientometric Analysis," IJERPH, MDPI, vol. 15(10), pages 1-29, October.
    10. Aven, Terje, 2017. "How some types of risk assessments can support resilience analysis and management," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 536-543.
    11. Lin, Chen & Xiao, Hui & Peng, Rui & Xiang, Yisha, 2021. "Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    12. Zhao, Taiyi & Tang, Yuchun & Li, Qiming & Wang, Jingquan, 2023. "Resilience-oriented network reconfiguration strategies for community emergency medical services," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Jie Zhao & Ji Yun Lee & Dane Camenzind & Michael Wolcott & Kristin Lewis & Olivia Gillham, 2023. "Multi-Component Resilience Assessment Framework for a Supply Chain System," Sustainability, MDPI, vol. 15(7), pages 1-25, April.
    14. Tran, Huy T. & Balchanos, Michael & Domerçant, Jean Charles & Mavris, Dimitri N., 2017. "A framework for the quantitative assessment of performance-based system resilience," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 73-84.
    15. Xin Fu & Xinhao Wang, 2018. "Developing an integrative urban resilience capacity index for plan making," Environment Systems and Decisions, Springer, vol. 38(3), pages 367-378, September.
    16. Tonn, Gina & Reilly, Allison & Czajkowski, Jeffrey & Ghaedi, Hamed & Kunreuther, Howard, 2021. "U.S. transportation infrastructure resilience: Influences of insurance, incentives, and public assistance," Transport Policy, Elsevier, vol. 100(C), pages 108-119.
    17. Jesse M. Keenan, 2020. "COVID, resilience, and the built environment," Environment Systems and Decisions, Springer, vol. 40(2), pages 216-221, June.
    18. Wood, Matthew D. & Wells, Emily M. & Rice, Glenn & Linkov, Igor, 2019. "Quantifying and mapping resilience within large organizations," Omega, Elsevier, vol. 87(C), pages 117-126.
    19. David N. Bristow & Eugene A. Mohareb, 2020. "From the urban metabolism to the urban immune system," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 300-312, April.
    20. Thöns, Sebastian & Stewart, Mark G., 2019. "On decision optimality of terrorism risk mitigation measures for iconic bridges," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 574-583.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:43:y:2023:i:4:d:10.1007_s10669-023-09950-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.