IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i4d10.1007_s10668-023-03147-7.html
   My bibliography  Save this article

Spatial and temporal characteristics of pollution loads in Tuojiang River watershed located in Sichuan Province, Southwest of China

Author

Listed:
  • Yuting Xiao

    (Southwest University of Science and Technology)

  • Min Fan

    (Southwest University of Science and Technology)

  • Jing Yao

    (Southwest University of Science and Technology)

  • Xiaoying Liang

    (Southwest University of Science and Technology)

  • Can Cai

    (Southwest University of Science and Technology)

  • Yuanzhe Wang

    (Southwest University of Science and Technology)

  • Weiguo Tu

    (Sichuan Academy of Natural Resources Sciences - Sichuan Productivity Promotion Center)

Abstract

Tuojiang River watershed is the water supply area of Chengdu plain which is located in southwestern Sichuan Province, China, its safety of water environment directly impacts on social–economic sustainable development. In this study, we firstly used pollution discharge coefficient method to estimate the pollution loads of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN) and total phosphorus (TP) of main pollution sources in 28 districts (counties) of Tuojiang River watershed from 2007 to 2017. We then adopted principle component analysis and k-means cluster analysis to determine categories of pollution sources. We finally recognized pollution risk areas through global and local spatially autocorrelation analysis. The results suggested that the COD was the primary pollutant whose pollution load value can be up to 44.99 × 104 t. The livestock and poultry breeding, and urban life pollution sources were main pollution sources. The pollution loads were correlated to climate and intensive agricultural activities. The pollution sources types related to agricultural activities changed into pollution sources types related to urbanization levels because of changes in population and agricultural driving factors. The Yanjiang district located in the middle of study watershed was always in higher pollution risk, and the pollution of Fushun county located in the downstream of watershed had a spillover effect on its surrounding counties because of its high pollution risk. Therefore, it is vital to help environment decision makers make strategies of water environment management across watershed through quantification of temporal and spatial characteristics of main pollution loads and their driving factors.

Suggested Citation

  • Yuting Xiao & Min Fan & Jing Yao & Xiaoying Liang & Can Cai & Yuanzhe Wang & Weiguo Tu, 2024. "Spatial and temporal characteristics of pollution loads in Tuojiang River watershed located in Sichuan Province, Southwest of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 10283-10309, April.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:4:d:10.1007_s10668-023-03147-7
    DOI: 10.1007/s10668-023-03147-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03147-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03147-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng Zeng & Wei-Ge Luo & Zhe Wang & Fa-Cheng Yi, 2021. "Water Pollution and Its Causes in the Tuojiang River Basin, China: An Artificial Neural Network Analysis," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    2. Xiaoyan Bai & Wen Shen & Peng Wang & Xiaohong Chen & Yanhu He, 2020. "Response of Non-point Source Pollution Loads to Land Use Change under Different Precipitation Scenarios from a Future Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 3987-4002, October.
    3. Clement Kweku Kyei & Margaret Chitiga-Mabugu, 2021. "Welfare impacts of introducing water pollution tax in the Olifants river basin in South Africa: A revisited analysis using a top-down micro-accounting approach," Agrekon, Taylor & Francis Journals, vol. 60(3), pages 253-263, July.
    4. Subhasis Giri & Zeyuan Qiu & Tony Prato & Biliang Luo, 2016. "An Integrated Approach for Targeting Critical Source Areas to Control Nonpoint Source Pollution in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5087-5100, November.
    5. Michał Fiedler, 2021. "The Effects of Land Use on Concentrations of Nutrients and Selected Metals in Bottom Sediments and the Risk Assessment for Rivers of the Warta River Catchment, Poland," Land, MDPI, vol. 10(6), pages 1-20, June.
    6. Kyei, Clement Kweku & Chitiga-Mabugu, Margaret, 2021. "Welfare impacts of introducing water pollution tax in the Olifants river basin in South Africa: A revisited analysis using a top-down micro-accounting approach," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 60(3), June.
    7. Jinkai Li & Jin Zhang & Liutang Gong & Pei Miao, 2015. "The Spatial and Temporal Distribution of Coal Resource and its Utilization in China — Based on Space Exploration Analysis Technique ESDA," Energy & Environment, , vol. 26(6-7), pages 1099-1113, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pooja Patel & Arindam Sarkar, 2022. "Entropy-Based Flow and Sediment Routing in Data Deficit River Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2757-2777, June.
    2. Zheng Zeng & Wei-Ge Luo & Fa-Cheng Yi & Feng-Yu Huang & Cheng-Xia Wang & Yi-Ping Zhang & Qiang-Qiang Cheng & Zhe Wang, 2021. "Horizontal Distribution of Cadmium in Urban Constructed Wetlands: A Case Study," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    3. Chen, Hao & Chen, Jiachuan & Han, Guoyi & Cui, Qi, 2022. "Winding down the wind power curtailment in China: What made the difference?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Kai Zhang & Shunjie Wang & Shuyu Liu & Kunlun Liu & Jiayu Yan & Xuejia Li, 2022. "Water Environment Quality Evaluation and Pollutant Source Analysis in Tuojiang River Basin, China," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    5. K. Cheng & Q. Fu & J. Meng & T. X. Li & W. Pei, 2018. "Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2767-2781, June.
    6. Ying Chen & Binbin Lu & Chongyu Xu & Xingwei Chen & Meibing Liu & Lu Gao & Haijun Deng, 2022. "Uncertainty Evaluation of Best Management Practice Effectiveness Based on the AnnAGNPS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1307-1321, March.
    7. Xiaoyan Gong & Jianmin Bian & Yu Wang & Zhuo Jia & Hanli Wan, 2019. "Evaluating and Predicting the Effects of Land Use Changes on Water Quality Using SWAT and CA–Markov Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4923-4938, November.
    8. Michał Fiedler, 2023. "Long-Term Changes in the Pollution of Warta River Bottom Sediments with Heavy Metals, Poland—Case Study," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
    9. Mingtao Yan & Jianji Zhao & Jiajun Qiao & Dong Han & Qiankun Zhu & Yang Yang & Qi Liu & Zhipeng Wang, 2023. "Spatial Pattern Evolution and Influencing Factors on Agricultural Non-Point Source Pollution in Small Town Areas under the Background of Rapid Industrialization," IJERPH, MDPI, vol. 20(3), pages 1-19, February.
    10. Xiao Zhang & Xiaomin Chen & Wanshun Zhang & Hong Peng & Gaohong Xu & Yanxin Zhao & Zhenling Shen, 2022. "Impact of Land Use Changes on the Surface Runoff and Nutrient Load in the Three Gorges Reservoir Area, China," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    11. He, Jiaxin & Lin, Boqiang, 2019. "Assessment of waste incineration power with considerations of subsidies and emissions in China," Energy Policy, Elsevier, vol. 126(C), pages 190-199.
    12. Zheng Zeng & Wei-Ge Luo & Fa-Cheng Yi & Zhe Wang, 2021. "Cadmium Uptake, In Vivo Metastasis and Subcellular Environmental Response of Five Wetland Plants Using DFT Method," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    13. Cors Van den Brink & Willem Jan Zaadnoordijk & Bert Groenhof & Rini Bulterman & Carolien Steinweg, 2017. "REFLECT, a Decision Support System for Harmonizing Spatial Developments with Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1271-1281, March.
    14. Olufemi Abimbola & Aaron Mittelstet & Tiffany Messer & Elaine Berry & Ann van Griensven, 2020. "Modeling and Prioritizing Interventions Using Pollution Hotspots for Reducing Nutrients, Atrazine and E. coli Concentrations in a Watershed," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    15. Zhongfa Zhou & Weiquan Zhao & Sisi Lv & Denghong Huang & Zulun Zhao & Yaopeng Sun, 2023. "Spatiotemporal Transfer of Source-Sink Landscape Ecological Risk in a Karst Lake Watershed Based on Sub-Watersheds," Land, MDPI, vol. 12(7), pages 1-19, July.
    16. Willemen, Louise & Crossman, Neville D. & Newsom, Deanna & Hughell, David & Hunink, Johannes E. & Milder, Jeffrey C., 2019. "Aggregate effects on ecosystem services from certification of tea farming in the Upper Tana River basin, Kenya," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:4:d:10.1007_s10668-023-03147-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.