IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i3d10.1007_s10668-023-02963-1.html
   My bibliography  Save this article

Economic analysis of the circular economy based on waste plastic pyrolysis oil: a case of the university campus

Author

Listed:
  • Hayoung Park

    (Ewha Womans University)

  • Kayoung Kim

    (Ewha Womans University)

  • Mirae Yu

    (Ewha Womans University)

  • Zhihao Yun

    (Ewha Womans University)

  • Sanghun Lee

    (Ewha Womans University)

Abstract

Recently, the concept of a circular economy for carbon neutrality is emerging. In particular, waste plastics are one of the key wastes, and efforts are being made to recycle them as energy rather than dispose of them. Accordingly, the technology of producing and utilizing pyrolysis oil from waste plastics attracts attention. As it is an early stage of technology development, however, there are not many demonstrations and papers that analyze the technology broadly. The goal of this study is to propose building a circular economy on a university campus through waste plastic pyrolysis oil technology. To show its feasibility, waste plastic pyrolysis oil technology is analyzed comprehensively from economic, environmental, and policy perspectives using the scenario analysis technique on the university campus level. A methodology of the scenario analysis technique enables predicting the uncertainties. Since plastic pyrolysis oil technologies and carbon neutrality are accompanied by many uncertainties, this technique is expected to be an appropriate methodology for this study. First, the amount of pyrolysis oil production from waste plastics from the campus is estimated. Then, the cost and carbon emissions from waste plastics are estimated if the pyrolysis oil technology is used instead of the traditional waste disposal process. As a result, the total economic profits of up to 425,484,022 won/year (354,570.01 $/year) are expected when a circular economy is built using waste plastic pyrolysis oil. In addition, it is also confirmed that greenhouse gas (GHG) emissions can be reduced by up to 840,891 kgCO2eq/year. The waste plastic pyrolysis oil satisfies Korea’s gas pollutant standards and is consistent with the GHG reduction policy. It can be concluded that building a circular economy at the university campus level using waste plastic pyrolysis oil technology is suitable from economic, environmental, and policy perspectives.

Suggested Citation

  • Hayoung Park & Kayoung Kim & Mirae Yu & Zhihao Yun & Sanghun Lee, 2024. "Economic analysis of the circular economy based on waste plastic pyrolysis oil: a case of the university campus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 6293-6313, March.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-02963-1
    DOI: 10.1007/s10668-023-02963-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-02963-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-02963-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kosow, Hannah & Gaßner, Robert, 2008. "Methods of future and scenario analysis: overview, assessment, and selection criteria," IDOS Studies, German Institute of Development and Sustainability (IDOS), volume 39, number 39, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    3. Tzen-Ying Ling & Wei-Kai Hung & Chun-Tsu Lin & Michael Lu, 2020. "Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    4. Chen, Kaihua & Ren, Zhipeng & Mu, Shijun & Sun, Tara Qian & Mu, Rongping, 2020. "Integrating the Delphi survey into scenario planning for China's renewable energy development strategy towards 2030," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    5. Julia Terrapon-Pfaff & Sibel Raquel Ersoy & Thomas Fink & Sarra Amroune & El Mostafa Jamea & Hsaine Zgou & Peter Viebahn, 2020. "Localizing the Water-Energy Nexus: The Relationship between Solar Thermal Power Plants and Future Developments in Local Water Demand," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    6. Carlsson, Julia & Eriksson, Ljusk Ola & Öhman, Karin & Nordström, Eva-Maria, 2015. "Combining scientific and stakeholder knowledge in future scenario development — A forest landscape case study in northern Sweden," Forest Policy and Economics, Elsevier, vol. 61(C), pages 122-134.
    7. Fromhold-Eisebith, Martina & Marschall, Philip & Peters, Robert & Thomes, Paul, 2021. "Torn between digitized future and context dependent past – How implementing ‘Industry 4.0’ production technologies could transform the German textile industry," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    8. Henning Breuer & Florian Lüdeke-Freund, 2017. "Values-Based Network And Business Model Innovation," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 1-35, April.
    9. Hoffart, Franziska, 2022. "What is a feasible and 1.5°C-aligned hydrogen infrastructure for Germany? A multi-criteria economic study based on socio-technical energy scenarios," Ruhr Economic Papers 979, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    10. Zinaida Manžuch & Elena Macevičiūtė, 2020. "Getting ready to reduce the digital divide: Scenarios of Lithuanian public libraries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1205-1217, October.
    11. Kim, Sehoon & Connerton, Timothy Paul & Park, Cheongyeul, 2021. "Exploring the impact of technological disruptions in the automotive retail: A futures studies and systems thinking approach based on causal layered analysis and causal loop diagram," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    12. Jürgen Kopfmüller & Wolfgang Weimer-Jehle & Tobias Naegler & Jens Buchgeister & Klaus-Rainer Bräutigam & Volker Stelzer, 2021. "Integrative Scenario Assessment as a Tool to Support Decisions in Energy Transition," Energies, MDPI, vol. 14(6), pages 1-34, March.
    13. Vollmar, Horst Christian & Goluchowicz, Kerstin & Beckert, Bernd & Dönitz, Ewa & Bartholomeyczik, Sabine & Ostermann, Thomas & Boustani, Malaz & Buscher, Ines, 2014. "Health care for people with dementia in 2030 – Results of a multidisciplinary scenario process," Health Policy, Elsevier, vol. 114(2), pages 254-262.
    14. Hoogstra-Klein, Marjanke A. & Hengeveld, Geerten M. & de Jong, Rutger, 2017. "Analysing scenario approaches for forest management — One decade of experiences in Europe," Forest Policy and Economics, Elsevier, vol. 85(P2), pages 222-234.
    15. Flavio R. Arroyo M. & Luis J. Miguel, 2020. "Low-Carbon Energy Governance: Scenarios to Accelerate the Change in the Energy Matrix in Ecuador," Energies, MDPI, vol. 13(18), pages 1-13, September.
    16. Yuri Calleo & Simone Di Zio & Francesco Pilla, 2023. "Facilitating spatial consensus in complex future scenarios through Real‐Time Spatial Delphi: A novel web‐based open platform," Futures & Foresight Science, John Wiley & Sons, vol. 5(3-4), September.
    17. Zipan Cai & Bo Wang & Cong Cong & Vladimir Cvetkovic, 2020. "Spatial dynamic modelling for urban scenario planning: A case study of Nanjing, China," Environment and Planning B, , vol. 47(8), pages 1380-1396, October.
    18. Juho Roponen & Ahti Salo, 2024. "A probabilistic cross‐impact methodology for explorative scenario analysis," Futures & Foresight Science, John Wiley & Sons, vol. 6(1), March.
    19. Leypoldt, Leo & Dienhart, Christina & Caferoglu, Hüseyin & Salge, Torsten-Oliver & Antons, David, 2024. "The hydrogen field in 2035: A Delphi study forecasting dominant technology bundles," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
    20. Wikström, Gustav & Bledow, Nona & Matinmikko-Blue, Marja & Breuer, Henning & Costa, Cristina & Darzanos, George & Gavras, Anastasius & Hossfeld, Tobias & Mesogiti, Ioanna & Petersen, Katrina & Poramba, 2024. "Key value indicators: A framework for values-driven next-generation ICT solutions," Telecommunications Policy, Elsevier, vol. 48(6).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-02963-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.