IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v15y2025i2d10.1007_s13235-024-00578-3.html
   My bibliography  Save this article

Forward-Forward Mean Field Games in Mathematical Modeling with Application to Opinion Formation and Voting Models

Author

Listed:
  • Adriano Festa

    (Politecnico di Torino)

  • Simone Göttlich

    (University of Mannheim)

  • Michele Ricciardi

    (Università Luiss Guido Carli)

Abstract

While the general theory for the terminal-initial value problem in mean-field games is widely used in many models of applied mathematics, the modeling potential of the corresponding forward-forward version is still under-considered. In this work, we discuss some features of the problem in a quite general setting and explain how it may be appropriate to model a system of players that have a complete knowledge of the past states of the system and are adapting to new information without any knowledge about the future. Then we show how forward-forward mean field games can be effectively used in mathematical models for opinion formation and other social phenomena.

Suggested Citation

  • Adriano Festa & Simone Göttlich & Michele Ricciardi, 2025. "Forward-Forward Mean Field Games in Mathematical Modeling with Application to Opinion Formation and Voting Models," Dynamic Games and Applications, Springer, vol. 15(2), pages 664-692, May.
  • Handle: RePEc:spr:dyngam:v:15:y:2025:i:2:d:10.1007_s13235-024-00578-3
    DOI: 10.1007/s13235-024-00578-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-024-00578-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-024-00578-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Lorenz, 2007. "Continuous Opinion Dynamics Under Bounded Confidence: A Survey," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(12), pages 1819-1838.
    2. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    3. Hughes, R.L., 2000. "The flow of large crowds of pedestrians," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(4), pages 367-370.
    4. Archishman Chakraborty & Parikshit Ghosh & Jaideep Roy, 2020. "Expert-Captured Democracies," American Economic Review, American Economic Association, vol. 110(6), pages 1713-1751, June.
    5. Diogo Gomes & João Saúde, 2014. "Mean Field Games Models—A Brief Survey," Dynamic Games and Applications, Springer, vol. 4(2), pages 110-154, June.
    6. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    7. Sznajd-Weron, Katarzyna & Sznajd, Józef, 2005. "Who is left, who is right?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(2), pages 593-604.
    8. McKelvey, Richard D., 1976. "Intransitivities in multidimensional voting models and some implications for agenda control," Journal of Economic Theory, Elsevier, vol. 12(3), pages 472-482, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    2. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    3. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    4. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    5. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    6. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    7. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    8. repec:plo:pone00:0155098 is not listed on IDEAS
    9. repec:plo:pone00:0084592 is not listed on IDEAS
    10. Pawel Sobkowicz, 2009. "Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-11.
    11. Carlos Andrés Devia & Giulia Giordano, 2024. "Graphical analysis of agent-based opinion formation models," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-27, May.
    12. Wang, Huanjing & Shang, Lihui, 2015. "Opinion dynamics in networks with common-neighbors-based connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 180-186.
    13. Dimitris Tsintsaris & Milan Tsompanoglou & Evangelos Ioannidis, 2024. "Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business," Mathematics, MDPI, vol. 12(8), pages 1-27, April.
    14. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    15. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    16. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    17. Fu, Guiyuan & Cai, Yunze & Zhang, Weidong, 2017. "Analysis of naming game over networks in the presence of memory loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 350-361.
    18. Juliette Rouchier & Emily Tanimura, 2012. "When overconfident agents slow down collective learning," Post-Print hal-00623966, HAL.
    19. Melatagia Yonta, Paulin & Ndoundam, René, 2009. "Opinion dynamics using majority functions," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 223-244, March.
    20. Gündüç, Semra & Eryiğit, Recep, 2015. "The role of persuasion power on the consensus formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 16-24.
    21. Gwizdalla, Tomasz M., 2008. "Gallagher index for sociophysical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2937-2951.
    22. Liu, Qipeng & Wang, Xiaofan, 2013. "Social learning with bounded confidence and heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2368-2374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:15:y:2025:i:2:d:10.1007_s13235-024-00578-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.