IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v437y2015icp322-332.html
   My bibliography  Save this article

Multi-level tolerance opinion dynamics in military command and control networks

Author

Listed:
  • Song, Xiao
  • Shi, Wen
  • Tan, Gary
  • Ma, Yaofei

Abstract

Opinion exchange is useful when a military agent needs to take the opinions of others into account before decision making. Few studies have addressed opinion dynamics in military command and control (C2) organizations, which are often hierarchically ranked in a tree structure. Moreover, military agents should have different tolerance levels when communicating with differentially ranked agents, which is our reasoning for proposing an opinion dynamics model with multi-level tolerance in this study. We can use this model to test opinion dynamics models in depth and further analyze and compare them to traditional tree organizations and other organization forms, including small-world and scale-free networks. Opinion dynamics experiments show that although traditional indices such as a clustering coefficient or the average distance of a small-world network are worse than those of a scale-free network, opinion dynamics indices, which include the number of rounds to fixed opinions, number of opinion clusters, and relative size of the largest small-world cluster are unexpectedly better than those of a scale-free network. Moreover, adding links to a tree network can enhance the tendency to consensus, while a small-world network needs fewer links compared to a scale-free network.

Suggested Citation

  • Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
  • Handle: RePEc:eee:phsmap:v:437:y:2015:i:c:p:322-332
    DOI: 10.1016/j.physa.2015.05.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115004975
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    2. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    3. Guillaume Deffuant, 2006. "Comparing Extremism Propagation Patterns in Continuous Opinion Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(3), pages 1-8.
    4. Galam, Serge, 2003. "Modelling rumors: the no plane Pentagon French hoax case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 571-580.
    5. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    6. Liang, Haili & Yang, Yiping & Wang, Xiaofan, 2013. "Opinion dynamics in networks with heterogeneous confidence and influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2248-2256.
    7. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    8. Katarzyna Sznajd-Weron, 2005. "Sznajd model and its applications," HSC Research Reports HSC/05/04, Hugo Steinhaus Center, Wroclaw University of Technology.
    9. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    10. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    11. Amblard, Frédéric & Deffuant, Guillaume, 2004. "The role of network topology on extremism propagation with the relative agreement opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 725-738.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Xiao & Sun, Jinghan & Xie, Hongnan & Li, Qiyuan & Wang, Zilie & Han, Daolin, 2018. "Characteristic time based social force model improvement and exit assignment strategy for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 530-548.
    2. Song, Xiao & Ma, Liang & Ma, Yaofei & Yang, Chen & Ji, Hang, 2016. "Selfishness- and Selflessness-based models of pedestrian room evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 455-466.
    3. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:437:y:2015:i:c:p:322-332. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.