IDEAS home Printed from https://ideas.repec.org/a/spr/decisn/v52y2025i1d10.1007_s40622-025-00419-1.html
   My bibliography  Save this article

The future of fintech in the UAE and KSA: a shift from convenience to business viability

Author

Listed:
  • Darshan Pandya

    (NMIMS University Mumbai)

  • Killol Govani

    (Almosafer, Seera Group)

Abstract

This article discusses the emergence of fintech in the UAE and KSA over the recent past with a spotlight on the Buy Now, Pay Later (BNPL) phenomenon that is disrupting credit consumption pattern in the region. Even though BNPL has been on the rise because of its flexibility and lack of hidden costs, its future viability has problems associated with revenue generation, consumers who are overindebted and regulatory issues. Using ideas from Clayton Christensen’s Disruptive Innovation as well as the triple bottom line (TBL), this article highlights the shift from the current models based on growth to platforms for scale. To get sustainable growth, BNPL providers have to incorporate advanced analytics and follow sustainability policies and regulatory norms. In the conclusion of this paper, emphasis is made that for the growth and sustainable business model, fintech needs to evolve into full financial ecosystems.

Suggested Citation

  • Darshan Pandya & Killol Govani, 2025. "The future of fintech in the UAE and KSA: a shift from convenience to business viability," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 52(1), pages 7-15, March.
  • Handle: RePEc:spr:decisn:v:52:y:2025:i:1:d:10.1007_s40622-025-00419-1
    DOI: 10.1007/s40622-025-00419-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40622-025-00419-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40622-025-00419-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heidi Ledford, 2019. "Millions of black people affected by racial bias in health-care algorithms," Nature, Nature, vol. 574(7780), pages 608-609, October.
    2. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    3. Ed deHaan & Jungbae Kim & Ben Lourie & Chenqi Zhu, 2024. "Buy Now Pay (Pain?) Later," Management Science, INFORMS, vol. 70(8), pages 5586-5598, August.
    4. Kozodoi, Nikita & Jacob, Johannes & Lessmann, Stefan, 2022. "Fairness in credit scoring: Assessment, implementation and profit implications," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1083-1094.
    5. Robert Powell & Anh Do & Denise Gengatharen & Jaime Yong & Rasiah Gengatharen, 2023. "The relationship between responsible financial behaviours and financial wellbeing: The case of buy‐now‐pay‐later," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4431-4451, December.
    6. Nikita Kozodoi & Johannes Jacob & Stefan Lessmann, 2021. "Fairness in Credit Scoring: Assessment, Implementation and Profit Implications," Papers 2103.01907, arXiv.org, revised Jun 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    2. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
    3. Topuz, Kazim & Urban, Timothy L. & Yildirim, Mehmet B., 2024. "A Markovian score model for evaluating provider performance for continuity of care—An explainable analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 341-351.
    4. Anna Langenberg & Shih-Chi Ma & Tatiana Ermakova & Benjamin Fabian, 2023. "Formal Group Fairness and Accuracy in Automated Decision Making," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
    5. Henry Penikas, 2023. "Unaccounted model risk for Basel IRB models deemed acceptable by conventional validation criteria," Risk Management, Palgrave Macmillan, vol. 25(4), pages 1-25, December.
    6. Lu, Xuefei & Calabrese, Raffaella, 2023. "The Cohort Shapley value to measure fairness in financing small and medium enterprises in the UK," Finance Research Letters, Elsevier, vol. 58(PC).
    7. Li, Zhe & Liang, Shuguang & Pan, Xianyou & Pang, Meng, 2024. "Credit risk prediction based on loan profit: Evidence from Chinese SMEs," Research in International Business and Finance, Elsevier, vol. 67(PA).
    8. Kazim Topuz & Akhilesh Bajaj & Kristof Coussement & Timothy L. Urban, 2025. "Interpretable machine learning and explainable artificial intelligence," Annals of Operations Research, Springer, vol. 347(2), pages 775-782, April.
    9. Maarouf, Abdurahman & Feuerriegel, Stefan & Pröllochs, Nicolas, 2025. "A fused large language model for predicting startup success," European Journal of Operational Research, Elsevier, vol. 322(1), pages 198-214.
    10. Piccialli, Veronica & Romero Morales, Dolores & Salvatore, Cecilia, 2024. "Supervised feature compression based on counterfactual analysis," European Journal of Operational Research, Elsevier, vol. 317(2), pages 273-285.
    11. Zilong Liu & Hongyan Liang, 2025. "Do Fintech Lenders Align Pricing with Risk? Evidence from a Model-Based Assessment of Conforming Mortgages," FinTech, MDPI, vol. 4(2), pages 1-16, June.
    12. Zha, Yong & Wang, Yuting & Li, Quan & Yao, Wenying, 2022. "Credit offering strategy and dynamic pricing in the presence of consumer strategic behavior," European Journal of Operational Research, Elsevier, vol. 303(2), pages 753-766.
    13. Jos'e Pombal & Andr'e F. Cruz & Jo~ao Bravo & Pedro Saleiro & M'ario A. T. Figueiredo & Pedro Bizarro, 2022. "Understanding Unfairness in Fraud Detection through Model and Data Bias Interactions," Papers 2207.06273, arXiv.org.
    14. Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
    15. Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
    16. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2025. "Differential quantile-based sensitivity in discontinuous models," European Journal of Operational Research, Elsevier, vol. 322(2), pages 554-572.
    17. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    18. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    19. Emmanuel Flachaire & Gilles Hacheme & Sullivan Hu'e & S'ebastien Laurent, 2022. "GAM(L)A: An econometric model for interpretable Machine Learning," Papers 2203.11691, arXiv.org.
    20. Lukas Jurgensmeier & Bernd Skiera, 2023. "Measuring Self-Preferencing on Digital Platforms," Papers 2303.14947, arXiv.org, revised Feb 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decisn:v:52:y:2025:i:1:d:10.1007_s40622-025-00419-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.