IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v64y2016i3d10.1007_s10589-016-9824-2.html
   My bibliography  Save this article

Selective bi-coordinate variations for resource allocation type problems

Author

Listed:
  • I. V. Konnov

    (Kazan Federal University)

Abstract

We suggest a modification of the coordinate descent methods for resource allocation problems, which keeps the basic convergence properties of the gradient ones, but enables one to reduce the total computational expenses and to provide all the computations in a distributed manner. We describe applications to economic (auction) equilibrium problems and give preliminary results of computational tests.

Suggested Citation

  • I. V. Konnov, 2016. "Selective bi-coordinate variations for resource allocation type problems," Computational Optimization and Applications, Springer, vol. 64(3), pages 821-842, July.
  • Handle: RePEc:spr:coopap:v:64:y:2016:i:3:d:10.1007_s10589-016-9824-2
    DOI: 10.1007/s10589-016-9824-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9824-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9824-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrei Patrascu & Ion Necoara, 2015. "Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization," Journal of Global Optimization, Springer, vol. 61(1), pages 19-46, January.
    2. C. J. Lin & S. Lucidi & L. Palagi & A. Risi & M. Sciandrone, 2009. "Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 107-126, April.
    3. Amir Beck, 2014. "The 2-Coordinate Descent Method for Solving Double-Sided Simplex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 892-919, September.
    4. Allevi, E., Gnudi, A. & Konnov, I.V., 2001. "Combined relaxation method with Frank-Wolfe type auxiliary procedures for variational inequalities over product sets," Pure Mathematics and Applications, Department of Mathematics, Corvinus University of Budapest, vol. 12(1), pages 1-9.
    5. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Konnov, 2021. "Variational Inequality Type Formulations of General Market Equilibrium Problems with Local Information," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 332-355, February.
    2. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
    2. Ion Necoara & Yurii Nesterov & François Glineur, 2017. "Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
    3. Paul Tseng & Sangwoon Yun, 2010. "A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training," Computational Optimization and Applications, Springer, vol. 47(2), pages 179-206, October.
    4. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    5. Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
    6. Andrea Manno & Laura Palagi & Simone Sagratella, 2018. "Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training," Computational Optimization and Applications, Springer, vol. 71(1), pages 115-145, September.
    7. Andrei Patrascu & Ion Necoara, 2015. "Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization," Journal of Global Optimization, Springer, vol. 61(1), pages 19-46, January.
    8. Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.
    9. Niu, Yi-Shuai & Júdice, Joaquim & Le Thi, Hoai An & Pham, Dinh Tao, 2019. "Improved dc programming approaches for solving the quadratic eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 95-113.
    10. G. Cocchi & G. Liuzzi & A. Papini & M. Sciandrone, 2018. "An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 267-296, March.
    11. Dingfei Jin & Guang Yang & Zhenghui Li & Haode Liu, 2019. "Sparse Recovery Algorithm for Compressed Sensing Using Smoothed l 0 Norm and Randomized Coordinate Descent," Mathematics, MDPI, vol. 7(9), pages 1-13, September.
    12. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    13. Monica Bianchi & Siegfried Schaible, 2004. "Equilibrium Problems under Generalized Convexity and Generalized Monotonicity," Journal of Global Optimization, Springer, vol. 30(2), pages 121-134, November.
    14. Veronica Piccialli & Marco Sciandrone, 2022. "Nonlinear optimization and support vector machines," Annals of Operations Research, Springer, vol. 314(1), pages 15-47, July.
    15. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
    16. Cristofari, Andrea, 2023. "A decomposition method for lasso problems with zero-sum constraint," European Journal of Operational Research, Elsevier, vol. 306(1), pages 358-369.
    17. Sergiy Butenko, 2016. "Journal of Global Optimization Best Paper Award for 2015," Journal of Global Optimization, Springer, vol. 66(4), pages 595-596, December.
    18. Leonardo Galli & Alessandro Galligari & Marco Sciandrone, 2020. "A unified convergence framework for nonmonotone inexact decomposition methods," Computational Optimization and Applications, Springer, vol. 75(1), pages 113-144, January.
    19. Brás, Carmo P. & Fischer, Andreas & Júdice, Joaquim J. & Schönefeld, Klaus & Seifert, Sarah, 2017. "A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 36-48.
    20. Veronica Piccialli & Marco Sciandrone, 2018. "Nonlinear optimization and support vector machines," 4OR, Springer, vol. 16(2), pages 111-149, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:64:y:2016:i:3:d:10.1007_s10589-016-9824-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.