IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v314y2022i1d10.1007_s10479-022-04655-x.html
   My bibliography  Save this article

Nonlinear optimization and support vector machines

Author

Listed:
  • Veronica Piccialli

    (Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”, Sapienza Università degli Studi di Roma)

  • Marco Sciandrone

    (Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”, Sapienza Università degli Studi di Roma)

Abstract

Support vector machine (SVM) is one of the most important class of machine learning models and algorithms, and has been successfully applied in various fields. Nonlinear optimization plays a crucial role in SVM methodology, both in defining the machine learning models and in designing convergent and efficient algorithms for large-scale training problems. In this paper we present the convex programming problems underlying SVM focusing on supervised binary classification. We analyze the most important and used optimization methods for SVM training problems, and we discuss how the properties of these problems can be incorporated in designing useful algorithms.

Suggested Citation

  • Veronica Piccialli & Marco Sciandrone, 2022. "Nonlinear optimization and support vector machines," Annals of Operations Research, Springer, vol. 314(1), pages 15-47, July.
  • Handle: RePEc:spr:annopr:v:314:y:2022:i:1:d:10.1007_s10479-022-04655-x
    DOI: 10.1007/s10479-022-04655-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04655-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04655-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. J. Lin & S. Lucidi & L. Palagi & A. Risi & M. Sciandrone, 2009. "Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 107-126, April.
    2. Annabella Astorino & Antonio Fuduli, 2015. "Support Vector Machine Polyhedral Separability in Semisupervised Learning," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1039-1050, March.
    3. E. Gertz & Joshua Griffin, 2010. "Using an iterative linear solver in an interior-point method for generating support vector machines," Computational Optimization and Applications, Springer, vol. 47(3), pages 431-453, November.
    4. Veronica Piccialli & Marco Sciandrone, 2018. "Nonlinear optimization and support vector machines," 4OR, Springer, vol. 16(2), pages 111-149, June.
    5. Cassioli, A. & Chiavaioli, A. & Manes, C. & Sciandrone, M., 2013. "An incremental least squares algorithm for large scale linear classification," European Journal of Operational Research, Elsevier, vol. 224(3), pages 560-565.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veronica Piccialli & Marco Sciandrone, 2018. "Nonlinear optimization and support vector machines," 4OR, Springer, vol. 16(2), pages 111-149, June.
    2. Tommaso Colombo & Simone Sagratella, 2020. "Distributed algorithms for convex problems with linear coupling constraints," Journal of Global Optimization, Springer, vol. 77(1), pages 53-73, May.
    3. Yanqin Bai & Xin Yan, 2016. "Conic Relaxations for Semi-supervised Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 299-313, April.
    4. Yves Crama & Michel Grabisch & Silvano Martello, 2022. "Preface," Annals of Operations Research, Springer, vol. 314(1), pages 1-3, July.
    5. Andrea Manno & Laura Palagi & Simone Sagratella, 2018. "Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training," Computational Optimization and Applications, Springer, vol. 71(1), pages 115-145, September.
    6. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
    7. Leonardo Galli & Alessandro Galligari & Marco Sciandrone, 2020. "A unified convergence framework for nonmonotone inexact decomposition methods," Computational Optimization and Applications, Springer, vol. 75(1), pages 113-144, January.
    8. Yves Crama & Michel Grabisch & Silvano Martello, 2021. "4OR comes of age," 4OR, Springer, vol. 19(1), pages 1-13, March.
    9. Xeniya Vladimirovna Grigor’eva, 2016. "Approximate Functions in a Problem of Sets Separation," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 550-572, November.
    10. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    11. Giampaolo Liuzzi & Laura Palagi & Mauro Piacentini, 2010. "On the convergence of a Jacobi-type algorithm for Singly Linearly-Constrained Problems Subject to simple Bounds," DIS Technical Reports 2010-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    12. Dellepiane, Umberto & Palagi, Laura, 2015. "Using SVM to combine global heuristics for the Standard Quadratic Problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 596-605.
    13. Cassioli, A. & Di Lorenzo, D. & Sciandrone, M., 2013. "On the convergence of inexact block coordinate descent methods for constrained optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 274-281.
    14. G. Liuzzi & S. Lucidi & F. Rinaldi, 2012. "Derivative-free methods for bound constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 53(2), pages 505-526, October.
    15. Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2015. "Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 933-965, March.
    16. Laura Palagi, 2019. "Global optimization issues in deep network regression: an overview," Journal of Global Optimization, Springer, vol. 73(2), pages 239-277, February.
    17. Paul Tseng & Sangwoon Yun, 2010. "A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training," Computational Optimization and Applications, Springer, vol. 47(2), pages 179-206, October.
    18. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    19. Andrei Patrascu & Ion Necoara, 2015. "Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization," Journal of Global Optimization, Springer, vol. 61(1), pages 19-46, January.
    20. G. Cocchi & G. Liuzzi & A. Papini & M. Sciandrone, 2018. "An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 267-296, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:314:y:2022:i:1:d:10.1007_s10479-022-04655-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.