IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i2p505-526.html
   My bibliography  Save this article

Derivative-free methods for bound constrained mixed-integer optimization

Author

Listed:
  • G. Liuzzi
  • S. Lucidi
  • F. Rinaldi

Abstract

We consider the problem of minimizing a continuously differentiable function of several variables subject to simple bound constraints where some of the variables are restricted to take integer values. We assume that the first order derivatives of the objective function can be neither calculated nor approximated explicitly. This class of mixed integer nonlinear optimization problems arises frequently in many industrial and scientific applications and this motivates the increasing interest in the study of derivative-free methods for their solution. The continuous variables are handled by a linesearch strategy whereas to tackle the discrete ones we employ a local search-type approach. We propose different algorithms which are characterized by the way the current iterate is updated and by the stationarity conditions satisfied by the limit points of the sequences they produce. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • G. Liuzzi & S. Lucidi & F. Rinaldi, 2012. "Derivative-free methods for bound constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 53(2), pages 505-526, October.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:505-526
    DOI: 10.1007/s10589-011-9405-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-011-9405-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-011-9405-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. J. Lin & S. Lucidi & L. Palagi & A. Risi & M. Sciandrone, 2009. "Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 107-126, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Ciccazzo & Gianni Di Pillo & Vittorio Latorre, 2015. "A SVM Surrogate Model Based Method for Yield Optimization in Electronic Circuit Design," DIAG Technical Reports 2015-03, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    2. Tommaso Giovannelli & Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2022. "Derivative-free methods for mixed-integer nonsmooth constrained optimization," Computational Optimization and Applications, Springer, vol. 82(2), pages 293-327, June.
    3. Stefano Lucidi & Massimo Maurici & Luca Paulon & Francesco Rinaldi & Massimo Roma, 2014. "A derivative-free approach for a simulation-based optimization problem in healthcare," DIAG Technical Reports 2014-15, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. L. Grippo & F. Rinaldi, 2015. "A class of derivative-free nonmonotone optimization algorithms employing coordinate rotations and gradient approximations," Computational Optimization and Applications, Springer, vol. 60(1), pages 1-33, January.
    5. Nikolaos Ploskas & Nikolaos V. Sahinidis, 2022. "Review and comparison of algorithms and software for mixed-integer derivative-free optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 433-462, March.
    6. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    7. Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2015. "Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 933-965, March.
    8. Eric Newby & M. Ali, 2015. "A trust-region-based derivative free algorithm for mixed integer programming," Computational Optimization and Applications, Springer, vol. 60(1), pages 199-229, January.
    9. Angelo Ciccazzo & Vittorio Latorre & Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2015. "Derivative-Free Robust Optimization for Circuit Design," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 842-861, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Manno & Laura Palagi & Simone Sagratella, 2018. "Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training," Computational Optimization and Applications, Springer, vol. 71(1), pages 115-145, September.
    2. Veronica Piccialli & Marco Sciandrone, 2022. "Nonlinear optimization and support vector machines," Annals of Operations Research, Springer, vol. 314(1), pages 15-47, July.
    3. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
    4. Leonardo Galli & Alessandro Galligari & Marco Sciandrone, 2020. "A unified convergence framework for nonmonotone inexact decomposition methods," Computational Optimization and Applications, Springer, vol. 75(1), pages 113-144, January.
    5. Veronica Piccialli & Marco Sciandrone, 2018. "Nonlinear optimization and support vector machines," 4OR, Springer, vol. 16(2), pages 111-149, June.
    6. Giampaolo Liuzzi & Laura Palagi & Mauro Piacentini, 2010. "On the convergence of a Jacobi-type algorithm for Singly Linearly-Constrained Problems Subject to simple Bounds," DIS Technical Reports 2010-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    7. Dellepiane, Umberto & Palagi, Laura, 2015. "Using SVM to combine global heuristics for the Standard Quadratic Problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 596-605.
    8. Cassioli, A. & Di Lorenzo, D. & Sciandrone, M., 2013. "On the convergence of inexact block coordinate descent methods for constrained optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 274-281.
    9. Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2015. "Derivative-Free Methods for Mixed-Integer Constrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 933-965, March.
    10. Paul Tseng & Sangwoon Yun, 2010. "A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training," Computational Optimization and Applications, Springer, vol. 47(2), pages 179-206, October.
    11. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    12. Andrei Patrascu & Ion Necoara, 2015. "Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization," Journal of Global Optimization, Springer, vol. 61(1), pages 19-46, January.
    13. G. Cocchi & G. Liuzzi & A. Papini & M. Sciandrone, 2018. "An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 267-296, March.
    14. Amir Beck, 2014. "The 2-Coordinate Descent Method for Solving Double-Sided Simplex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 892-919, September.
    15. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
    16. Tommaso Colombo & Simone Sagratella, 2020. "Distributed algorithms for convex problems with linear coupling constraints," Journal of Global Optimization, Springer, vol. 77(1), pages 53-73, May.
    17. David Di Lorenzo & Alessandro Galligari & Marco Sciandrone, 2015. "A convergent and efficient decomposition method for the traffic assignment problem," Computational Optimization and Applications, Springer, vol. 60(1), pages 151-170, January.
    18. I. V. Konnov, 2016. "Selective bi-coordinate variations for resource allocation type problems," Computational Optimization and Applications, Springer, vol. 64(3), pages 821-842, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:505-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.