IDEAS home Printed from
   My bibliography  Save this article

Derivative-free methods for bound constrained mixed-integer optimization


  • G. Liuzzi


  • S. Lucidi


  • F. Rinaldi



We consider the problem of minimizing a continuously differentiable function of several variables subject to simple bound constraints where some of the variables are restricted to take integer values. We assume that the first order derivatives of the objective function can be neither calculated nor approximated explicitly. This class of mixed integer nonlinear optimization problems arises frequently in many industrial and scientific applications and this motivates the increasing interest in the study of derivative-free methods for their solution. The continuous variables are handled by a linesearch strategy whereas to tackle the discrete ones we employ a local search-type approach. We propose different algorithms which are characterized by the way the current iterate is updated and by the stationarity conditions satisfied by the limit points of the sequences they produce. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • G. Liuzzi & S. Lucidi & F. Rinaldi, 2012. "Derivative-free methods for bound constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 53(2), pages 505-526, October.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:505-526
    DOI: 10.1007/s10589-011-9405-3

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Angelo Ciccazzo & Gianni Di Pillo & Vittorio Latorre, 2015. "A SVM Surrogate Model Based Method for Yield Optimization in Electronic Circuit Design," DIAG Technical Reports 2015-03, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    2. Stefano Lucidi & Massimo Maurici & Luca Paulon & Francesco Rinaldi & Massimo Roma, 2014. "A derivative-free approach for a simulation-based optimization problem in healthcare," DIAG Technical Reports 2014-15, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    3. L. Grippo & F. Rinaldi, 2015. "A class of derivative-free nonmonotone optimization algorithms employing coordinate rotations and gradient approximations," Computational Optimization and Applications, Springer, vol. 60(1), pages 1-33, January.
    4. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    5. repec:spr:joptap:v:164:y:2015:i:3:d:10.1007_s10957-014-0617-4 is not listed on IDEAS
    6. Eric Newby & M. Ali, 2015. "A trust-region-based derivative free algorithm for mixed integer programming," Computational Optimization and Applications, Springer, vol. 60(1), pages 199-229, January.
    7. repec:spr:joptap:v:164:y:2015:i:3:d:10.1007_s10957-013-0441-2 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:505-526. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.