IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v57y2014i1p71-104.html
   My bibliography  Save this article

A cutting-plane algorithm for solving a weighted influence interdiction problem

Author

Listed:
  • Mehdi Hemmati
  • J. Cole Smith
  • My Thai

Abstract

We consider a two-stage defender-attacker game that takes place on a network, in which the attacker seeks to take control over (or “influence”) as many nodes as possible. The defender acts first in this game by protecting a subset of nodes that cannot be influenced by the attacker. With full knowledge of the defender’s action, the attacker can then influence an initial subset of unprotected nodes. The influence then spreads over a finite number of time stages, where an uninfluenced node becomes influenced at time t if a threshold number of its neighbors are influenced at time t−1. The attacker’s objective is to maximize the weighted number of nodes that are influenced over the time horizon, where the weights depend both on the node and on the time at which that is influenced. This defender-attacker game is especially difficult to optimize, because the attacker’s problem itself is NP-hard, which precludes a standard inner-dualization approach that is common in many interdiction studies. We provide three models for solving the attacker’s problem, and develop a tailored cutting-plane algorithm for solving the defender’s problem. We then demonstrate the computational efficacy of our proposed algorithms on a set of randomly generated instances. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Mehdi Hemmati & J. Cole Smith & My Thai, 2014. "A cutting-plane algorithm for solving a weighted influence interdiction problem," Computational Optimization and Applications, Springer, vol. 57(1), pages 71-104, January.
  • Handle: RePEc:spr:coopap:v:57:y:2014:i:1:p:71-104
    DOI: 10.1007/s10589-013-9589-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9589-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9589-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    2. J. Cole Smith & Churlzu Lim, 2008. "Algorithms for Network Interdiction and Fortification Games," Springer Optimization and Its Applications, in: Altannar Chinchuluun & Panos M. Pardalos & Athanasios Migdalas & Leonidas Pitsoulis (ed.), Pareto Optimality, Game Theory And Equilibria, pages 609-644, Springer.
    3. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanınmış, Kübra & Aras, Necati & Altınel, İ. Kuban, 2022. "Improved x-space algorithm for min-max bilevel problems with an application to misinformation spread in social networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 40-52.
    2. Hooshmand, F. & Mirarabrazi, F. & MirHassani, S.A., 2020. "Efficient Benders decomposition for distance-based critical node detection problem," Omega, Elsevier, vol. 93(C).
    3. Andrea Baggio & Margarida Carvalho & Andrea Lodi & Andrea Tramontani, 2021. "Multilevel Approaches for the Critical Node Problem," Operations Research, INFORMS, vol. 69(2), pages 486-508, March.
    4. Tanınmış, Kübra & Aras, Necati & Altınel, I.K., 2019. "Influence maximization with deactivation in social networks," European Journal of Operational Research, Elsevier, vol. 278(1), pages 105-119.
    5. Alberto Caprara & Margarida Carvalho & Andrea Lodi & Gerhard J. Woeginger, 2016. "Bilevel Knapsack with Interdiction Constraints," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 319-333, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    2. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    3. Juan S. Borrero & Oleg A. Prokopyev & Denis Sauré, 2019. "Sequential Interdiction with Incomplete Information and Learning," Operations Research, INFORMS, vol. 67(1), pages 72-89, January.
    4. Brian Lunday & Hanif Sherali, 2012. "Network interdiction to minimize the maximum probability of evasion with synergy between applied resources," Annals of Operations Research, Springer, vol. 196(1), pages 411-442, July.
    5. Leonardo Lozano & J. Cole Smith, 2017. "A Backward Sampling Framework for Interdiction Problems with Fortification," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 123-139, February.
    6. Mike Prince & J. Cole Smith & Joseph Geunes, 2013. "A three‐stage procurement optimization problem under uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(5), pages 395-412, August.
    7. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    8. Ali Koç & David P. Morton, 2015. "Prioritization via Stochastic Optimization," Management Science, INFORMS, vol. 61(3), pages 586-603, March.
    9. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    10. Ketkov, Sergey S. & Prokopyev, Oleg A., 2020. "On greedy and strategic evaders in sequential interdiction settings with incomplete information," Omega, Elsevier, vol. 92(C).
    11. Casorrán, Carlos & Fortz, Bernard & Labbé, Martine & Ordóñez, Fernando, 2019. "A study of general and security Stackelberg game formulations," European Journal of Operational Research, Elsevier, vol. 278(3), pages 855-868.
    12. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    13. Xiaojun (Gene) Shan & Jun Zhuang, 2014. "Modeling Credible Retaliation Threats in Deterring the Smuggling of Nuclear Weapons Using Partial Inspection---A Three-Stage Game," Decision Analysis, INFORMS, vol. 11(1), pages 43-62, March.
    14. Chan Y. Han & Brian J. Lunday & Matthew J. Robbins, 2016. "A Game Theoretic Model for the Optimal Location of Integrated Air Defense System Missile Batteries," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 405-416, August.
    15. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    16. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    17. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    18. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    19. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    20. Alexander Shiroky & Andrey Kalashnikov, 2021. "Mathematical Problems of Managing the Risks of Complex Systems under Targeted Attacks with Known Structures," Mathematics, MDPI, vol. 9(19), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:1:p:71-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.