Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this articleNonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-009-9314-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- A. Heusinger & C. Kanzow, 2009. "Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 159-183, October.
- Jong-Shi Pang & Daniel Ralph, 1996. "Piecewise Smoothness, Local Invertibility, and Parametric Analysis of Normal Maps," Mathematics of Operations Research, INFORMS, vol. 21(2), pages 401-426, May.
- Steffan Berridge & Jacek Krawczyk, "undated".
"Relaxation Algorithms in Finding Nash Equilibrium,"
Computing in Economics and Finance 1997
159, Society for Computational Economics.
- Jacek B. Krawczyk & Steffan Berridge, 1997. "Relaxation Algorithms in Finding Nash Equilibria," Computational Economics 9707002, University Library of Munich, Germany.
- Anna Heusinger & Christian Kanzow, 2009. "Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions," Computational Optimization and Applications, Springer, vol. 43(3), pages 353-377, July.
- Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
- Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Simone Sagratella, 2017. "Computing equilibria of Cournot oligopoly models with mixed-integer quantities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 549-565, December.
- Axel Dreves, 2014. "Finding all solutions of affine generalized Nash equilibrium problems with one-dimensional strategy sets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(2), pages 139-159, October.
- Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
- Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
- Stein, Oliver & Sudermann-Merx, Nathan, 2018. "The noncooperative transportation problem and linear generalized Nash games," European Journal of Operational Research, Elsevier, vol. 266(2), pages 543-553.
- Axel Dreves, 2018. "How to Select a Solution in Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 973-997, September.
- Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
- Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
- Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
- J. Contreras & J. B. Krawczyk & J. Zuccollo, 2016. "Economics of collective monitoring: a study of environmentally constrained electricity generators," Computational Management Science, Springer, vol. 13(3), pages 349-369, July.
- Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
- Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
- K. Kubota & M. Fukushima, 2010. "Gap Function Approach to the Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 511-531, March.
- Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
- Benjamin F. Hobbs & J. S. Pang, 2007. "Nash-Cournot Equilibria in Electric Power Markets with Piecewise Linear Demand Functions and Joint Constraints," Operations Research, INFORMS, vol. 55(1), pages 113-127, February.
- Axel Dreves & Christian Kanzow & Oliver Stein, 2012. "Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems," Journal of Global Optimization, Springer, vol. 53(4), pages 587-614, August.
- Jacek B. Krawczyk & Mabel Tidball, 2016.
"Economic Problems with Constraints: How Efficiency Relates to Equilibrium,"
International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-19, December.
- Jacek B Krawczyk & Mabel Tidball, 2016. "Economic problems with constraints: how efficiency relates to equilibrium," Post-Print hal-02631199, HAL.
- Masao Fukushima, 2011. "Restricted generalized Nash equilibria and controlled penalty algorithm," Computational Management Science, Springer, vol. 8(3), pages 201-218, August.
- Elnaz Kanani Kuchesfehani & Georges Zaccour, 2015. "S-adapted Equilibria in Games Played Over Event Trees with Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 644-658, August.
- Axel Dreves & Anna Heusinger & Christian Kanzow & Masao Fukushima, 2013. "A globalized Newton method for the computation of normalized Nash equilibria," Journal of Global Optimization, Springer, vol. 56(2), pages 327-340, June.
- Axel Dreves & Joachim Gwinner, 2016. "Jointly Convex Generalized Nash Equilibria and Elliptic Multiobjective Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 1065-1086, March.
- J. S. Pang, 2007. "Partially B-Regular Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 687-699, August.
- D. Aussel & R. Correa & M. Marechal, 2011. "Gap Functions for Quasivariational Inequalities and Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 474-488, December.
- Flam, Sjur & Ruszczynski, A., 2006.
"Computing Normalized Equilibria in Convex-Concave Games,"
Working Papers
2006:9, Lund University, Department of Economics.
- Flåm, Sjur Didrik & Ruszczynski, A., 2006. "Computing Normalized Equilibria in Convex-Concave Games," Working Papers in Economics 05/06, University of Bergen, Department of Economics.
- Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
- Contreras, Javier & Krawczyk, Jacek & Zuccollo, James, 2008. "The invisible polluter: Can regulators save consumer surplus?," MPRA Paper 9890, University Library of Munich, Germany.
- Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
More about this item
Keywords
Generalized Nash equilibrium problem; Jointly convex; Optimization reformulation; Continuity; PC 1 mapping; Semismoothness; Constant rank constraint qualification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:50:y:2011:i:1:p:23-48. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.