IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i7d10.1007_s00180-025-01628-z.html
   My bibliography  Save this article

Variable selection method based on BIC with consistency for non-zero partial correlations under a large-dimensional setting

Author

Listed:
  • Takayuki Yamada

    (Kyoto Women’s University)

  • Tetsuro Sakurai

    (Suwa University of Science)

  • Yasunori Fujikoshi

    (Hiroshima University)

Abstract

This paper addresses the problem of selecting non-zero partial correlations under the assumption of normality. It is cumbersome to compute variable selection criteria for all subsets of variable pairs when the number of variables is large, even if it is smaller than the sample size. To tackle this problem, we propose a fast and consistent variable selection method based on Bayesian information criterion (BIC). The consistency of the method is provided in a high-dimensional asymptotic framework such that the sample size and the number of variables both tend toward infinity under a certain rule. Through numerical simulations, it is shown that the proposed method has a high probability of selecting the true subset of pairs of non-zero partial correlation.

Suggested Citation

  • Takayuki Yamada & Tetsuro Sakurai & Yasunori Fujikoshi, 2025. "Variable selection method based on BIC with consistency for non-zero partial correlations under a large-dimensional setting," Computational Statistics, Springer, vol. 40(7), pages 3585-3611, September.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-025-01628-z
    DOI: 10.1007/s00180-025-01628-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-025-01628-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-025-01628-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Oda, Ryoya & Suzuki, Yuya & Yanagihara, Hirokazu & Fujikoshi, Yasunori, 2020. "A consistent variable selection method in high-dimensional canonical discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    3. Zhao, L. C. & Krishnaiah, P. R. & Bai, Z. D., 1986. "On detection of the number of signals in presence of white noise," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 1-25, October.
    4. Fujikoshi, Yasunori, 2022. "High-dimensional consistencies of KOO methods in multivariate regression model and discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasunori Fujikoshi & Tetsuro Sakurai, 2023. "High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance Structures," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    2. Nakagawa, Tomoyuki & Watanabe, Hiroki & Hyodo, Masashi, 2021. "Kick-one-out-based variable selection method for Euclidean distance-based classifier in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    4. Weilong Liu & Yanchu Liu, 2025. "Covariance Matrix Estimation for Positively Correlated Assets," Papers 2507.01545, arXiv.org.
    5. Aleksey I. Shinkevich & Alsu R. Akhmetshina & Ruslan R. Khalilov, 2022. "Development of a Methodology for Forecasting the Sustainable Development of Industry in Russia Based on the Tools of Factor and Discriminant Analysis," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    6. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    7. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    8. Wessel N. Wieringen & Gwenaël G. R. Leday, 2024. "Ridge-type covariance and precision matrix estimators of the multivariate normal distribution," Statistical Papers, Springer, vol. 65(9), pages 5835-5849, December.
    9. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    10. Christian Bongiorno, 2020. "Bootstraps Regularize Singular Correlation Matrices," Working Papers hal-02536278, HAL.
    11. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    12. Ali Atiah Alzahrani, 2025. "Multi-Agent Regime-Conditioned Diffusion (MARCD) for CVaR-Constrained Portfolio Decisions," Papers 2510.10807, arXiv.org, revised Nov 2025.
    13. Arbia, Giuseppe & Bramante, Riccardo & Facchinetti, Silvia & Zappa, Diego, 2018. "Modeling inter-country spatial financial interactions with Graphical Lasso: An application to sovereign co-risk evaluation," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 72-79.
    14. Tae-Hwy Lee & Ekaterina Seregina, 2024. "Optimal Portfolio Using Factor Graphical Lasso," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
    15. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    16. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    17. Huyen Pham & Xiaoli Wei & Chao Zhou, 2018. "Portfolio diversification and model uncertainty: a robust dynamic mean-variance approach," Papers 1809.01464, arXiv.org, revised Dec 2021.
    18. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
    19. Yiyao Zhang & Diksha Goel & Hussain Ahmad & Claudia Szabo, 2025. "RegimeFolio: A Regime Aware ML System for Sectoral Portfolio Optimization in Dynamic Markets," Papers 2510.14986, arXiv.org.
    20. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-025-01628-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.