IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i2d10.1007_s00180-024-01490-5.html
   My bibliography  Save this article

FPDclustering: a comprehensive R package for probabilistic distance clustering based methods

Author

Listed:
  • Cristina Tortora

    (San José State University)

  • Francesco Palumbo

    (University of Naples Federico II)

Abstract

Data clustering has a long history and refers to a vast range of models and methods that exploit the ever-more-performing numerical optimization algorithms and are designed to find homogeneous groups of observations in data. In this framework, the probability distance clustering (PDC) family methods offer a numerically effective alternative to model-based clustering methods and a more flexible opportunity in the framework of geometric data clustering. Given n J-dimensional data vectors arranged in a data matrix and the number K of clusters, PDC maximizes the joint density function that is defined as the sum of the products between the distance and the probability, both of which are measured for each data vector from each center. This article shows the capabilities of the PDC family, illustrating the R package FPDclustering.

Suggested Citation

  • Cristina Tortora & Francesco Palumbo, 2025. "FPDclustering: a comprehensive R package for probabilistic distance clustering based methods," Computational Statistics, Springer, vol. 40(2), pages 1123-1146, February.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01490-5
    DOI: 10.1007/s00180-024-01490-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01490-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01490-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Felix Mbuga & Cristina Tortora, 2021. "Spectral Clustering of Mixed-Type Data," Stats, MDPI, vol. 5(1), pages 1-11, December.
    2. Alexander H. Foss & Marianthi Markatou & Bonnie Ray, 2019. "Distance Metrics and Clustering Methods for Mixed‐type Data," International Statistical Review, International Statistical Institute, vol. 87(1), pages 80-109, April.
    3. Adi Ben-Israel & Cem Iyigun, 2008. "Probabilistic D-Clustering," Journal of Classification, Springer;The Classification Society, vol. 25(1), pages 5-26, June.
    4. Vichi, Maurizio & Kiers, Henk A. L., 2001. "Factorial k-means analysis for two-way data," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 49-64, July.
    5. Olvi L. Mangasarian & W. Nick Street & William H. Wolberg, 1995. "Breast Cancer Diagnosis and Prognosis Via Linear Programming," Operations Research, INFORMS, vol. 43(4), pages 570-577, August.
    6. Martina Sundqvist & Julien Chiquet & Guillem Rigaill, 2023. "Adjusting the adjusted Rand Index," Computational Statistics, Springer, vol. 38(1), pages 327-347, March.
    7. Tue Tjur, 2011. "Statistics in the computer age: personal reflections," Computational Statistics, Springer, vol. 26(3), pages 371-379, September.
    8. Cristina Tortora & Mireille Gettler Summa & Marina Marino & Francesco Palumbo, 2016. "Factor probabilistic distance clustering (FPDC): a new clustering method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 441-464, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Rocci & Maurizio Vichi & Monia Ranalli, 2025. "Mixture models for simultaneous classification and reduction of three-way data," Computational Statistics, Springer, vol. 40(1), pages 469-507, January.
    2. Cristina Tortora & Mireille Gettler Summa & Marina Marino & Francesco Palumbo, 2016. "Factor probabilistic distance clustering (FPDC): a new clustering method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 441-464, December.
    3. Efthymios Costa & Ioanna Papatsouma & Angelos Markos, 2023. "Benchmarking distance-based partitioning methods for mixed-type data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 701-724, September.
    4. Beibei Yuan & Willem Heiser & Mark Rooij, 2019. "The δ-Machine: Classification Based on Distances Towards Prototypes," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 442-470, October.
    5. Van Mechelen, Iven & Schepers, Jan, 2007. "A unifying model involving a categorical and/or dimensional reduction for multimode data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 537-549, September.
    6. Eva K. Lee & Richard J. Gallagher & David A. Patterson, 2003. "A Linear Programming Approach to Discriminant Analysis with a Reserved-Judgment Region," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 23-41, February.
    7. Alfonso Iodice D’Enza & Francesco Palumbo, 2013. "Iterative factor clustering of binary data," Computational Statistics, Springer, vol. 28(2), pages 789-807, April.
    8. Felix Mbuga & Cristina Tortora, 2021. "Spectral Clustering of Mixed-Type Data," Stats, MDPI, vol. 5(1), pages 1-11, December.
    9. W. N. Street & O. L. Mangasarian, 1998. "Improved Generalization via Tolerant Training," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 259-279, February.
    10. Lazhar Labiod & Mohamed Nadif, 2021. "Efficient regularized spectral data embedding," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 99-119, March.
    11. Uno, Kohei & Satomura, Hironori & Adachi, Kohei, 2016. "Fixed factor analysis with clustered factor score constraint," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 265-274.
    12. Sexton, Randall S. & Dorsey, Robert E. & Johnson, John D., 1999. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," European Journal of Operational Research, Elsevier, vol. 114(3), pages 589-601, May.
    13. Igor Kravchuk & Viktoriia Stoika, 2021. "Business Μodels of Βanks for the Financial Markets in the EU," European Research Studies Journal, European Research Studies Journal, vol. 0(2 - Part ), pages 371-382.
    14. Andrzej Młodak, 2014. "On the construction of an aggregated measure of the development of interval data," Computational Statistics, Springer, vol. 29(5), pages 895-929, October.
    15. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    16. Grané, Aurea & Salini, Silvia & Verdolini, Elena, 2021. "Robust multivariate analysis for mixed-type data: Novel algorithm and its practical application in socio-economic research," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    17. Roberto Rocci & Stefano Gattone & Maurizio Vichi, 2011. "A New Dimension Reduction Method: Factor Discriminant K-means," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 210-226, July.
    18. Vanessa Kuentz-Simonet & Amaury Labenne & Tina Rambonilaza, 2017. "Using ClustOfVar to Construct Quality of Life Indicators for Vulnerability Assessment Municipality Trajectories in Southwest France from 1999 to 2009," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 131(3), pages 973-997, April.
    19. Cristina Tortora & Paul D. McNicholas & Ryan P. Browne, 2016. "A mixture of generalized hyperbolic factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 423-440, December.
    20. Eman A Atta & Ahmed F Ali & Ahmed A Elshamy, 2023. "A modified weighted chimp optimization algorithm for training feed-forward neural network," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-38, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:2:d:10.1007_s00180-024-01490-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.