IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i1d10.1007_s00180-024-01496-z.html
   My bibliography  Save this article

PDAS: a Newton-type method for $$L_0$$ L 0 regularized accelerated failure time model

Author

Listed:
  • Ning Su

    (Wuhan University)

  • Yanyan Liu

    (Wuhan University)

  • Lican Kang

    (Wuhan University)

Abstract

Regularization methods are commonly utilized in survival analysis to address variable selection and estimation problems. Although most of the penalties can be regarded as variations of $$L_0$$ L 0 regularization to handle computational challenges, they may not always be efficient or effective in sparse recovery scenarios with massive amounts of data. To address this concern, this paper proposes a method for $$L_0$$ L 0 regularized estimation in the high-dimensional accelerated failure time (AFT) model, called the Primal Dual Active Set (PDAS) algorithm. Our approach introduces a tuning parameter to select active sets based on primal and dual information and performs root finding using the Karush-Kuhn-Tucker (KKT) conditions. To generate a sequence of solutions iteratively, this work also presents a sequential Primal Dual Active Set (SPDAS) algorithm that incorporates the PDAS algorithm in each iteration. Our approach can be classified as a Newton-type method to address the $$L_0$$ L 0 regularization problem directly. Extensive analysis, including simulations and real data studies, demonstrates that our approach provides competitive performance in terms of computational efficiency and predictive accuracy compared with existing methods for sparse recovery.

Suggested Citation

  • Ning Su & Yanyan Liu & Lican Kang, 2025. "PDAS: a Newton-type method for $$L_0$$ L 0 regularized accelerated failure time model," Computational Statistics, Springer, vol. 40(1), pages 331-352, January.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01496-z
    DOI: 10.1007/s00180-024-01496-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01496-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01496-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
    2. Johnson, Brent A. & Lin, D.Y. & Zeng, Donglin, 2008. "Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 672-680, June.
    3. Brent A. Johnson, 2008. "Variable selection in semiparametric linear regression with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 351-370, April.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    6. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    7. Jian Huang & Shuangge Ma & Huiliang Xie, 2006. "Regularized Estimation in the Accelerated Failure Time Model with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 62(3), pages 813-820, September.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Chao & Feng, Xingdong & Huang, Jian & Jiao, Yuling & Zhang, Shuang, 2022. "ℓ0-Regularized high-dimensional accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    2. Xiaochao Xia & Binyan Jiang & Jialiang Li & Wenyang Zhang, 2016. "Low-dimensional confounder adjustment and high-dimensional penalized estimation for survival analysis," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 547-569, October.
    3. Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
    4. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    5. Jialiang Li & Qi Zheng & Limin Peng & Zhipeng Huang, 2016. "Survival impact index and ultrahigh‐dimensional model‐free screening with survival outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1145-1154, December.
    6. Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
    7. Craig, Sarah J.C. & Kenney, Ana M. & Lin, Junli & Paul, Ian M. & Birch, Leann L. & Savage, Jennifer S. & Marini, Michele E. & Chiaromonte, Francesca & Reimherr, Matthew L. & Makova, Kateryna D., 2023. "Constructing a polygenic risk score for childhood obesity using functional data analysis," Econometrics and Statistics, Elsevier, vol. 25(C), pages 66-86.
    8. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2020. "Model-free variable selection for conditional mean in regression," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    9. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    10. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    11. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    12. Li, Peili & Jiao, Yuling & Lu, Xiliang & Kang, Lican, 2022. "A data-driven line search rule for support recovery in high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    13. Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
    14. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    15. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    16. Abhik Ghosh & Erica Ponzi & Torkjel Sandanger & Magne Thoresen, 2023. "Robust sure independence screening for nonpolynomial dimensional generalized linear models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1232-1262, September.
    17. Brittany Green & Heng Lian & Yan Yu & Tianhai Zu, 2021. "Ultra high‐dimensional semiparametric longitudinal data analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 903-913, September.
    18. Malene Kallestrup-Lamb & Anders Bredahl Kock & Johannes Tang Kristensen, 2016. "Lassoing the Determinants of Retirement," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1522-1561, December.
    19. Xiaochao Xia & Hao Ming, 2022. "A Flexibly Conditional Screening Approach via a Nonparametric Quantile Partial Correlation," Mathematics, MDPI, vol. 10(24), pages 1-32, December.
    20. Zhao, Bangxin & Liu, Xin & He, Wenqing & Yi, Grace Y., 2021. "Dynamic tilted current correlation for high dimensional variable screening," Journal of Multivariate Analysis, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01496-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.