IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i4d10.1007_s00180-023-01384-y.html
   My bibliography  Save this article

Semiparametric Bayesian approach to assess non-inferiority with assay sensitivity in a three-arm trial with normally distributed endpoints

Author

Listed:
  • Niansheng Tang

    (Yunnan University)

  • Fan Liang

    (Yunnan University)

  • Depeng Jiang

    (University of Manitoba)

Abstract

The non-inferiority (NI) trial is designed to show that an experimental treatment is not worse than an active reference by more than a pre-specified margin. Traditional NI trials do not include a placebo for ethical reasons; however, three-arm NI trials consisting of placebo, reference, and experimental treatment, can test the NI of experimental treatment to the reference while assessing the superiority of the reference over placebo. Assay sensitivity (AS) of a clinical trial is defined as its ability to distinguish between an effective and ineffective treatment and has been used to assess the superiority of the reference over placebo. Bayesian approaches have been predominantly used in clinical trials, particularly in NI trials. Most previous Bayesian approaches have focused on parametric priors of treatment effects. Restriction to parametric priors can mislead investigators into an inappropriate illusion of posterior certainty, leading to misleading decisions and inference. In this paper, we develop a novel semiparametric Bayesian approach to simultaneously assess NI of experimental treatment over the reference and AS of the reference over placebo in a three-arm trial with normally distributed endpoints. We use Dirichlet process priors to specify the priors of treatment effects. A Markov chain Monte Carlo algorithm is developed to calculate the posterior probability for assessing NI and AS. Simulation studies show that our proposed method is comparable to, or better than, the frequentist approach and parametric Bayesian methods in terms of the ability of controlling the type I errors and empirical statistical powers for testing NI. Data from two real trials are illustrated by the proposed methods. We recommend the usage of the proposed method in a three-arm trial.

Suggested Citation

  • Niansheng Tang & Fan Liang & Depeng Jiang, 2024. "Semiparametric Bayesian approach to assess non-inferiority with assay sensitivity in a three-arm trial with normally distributed endpoints," Computational Statistics, Springer, vol. 39(4), pages 2157-2181, June.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-023-01384-y
    DOI: 10.1007/s00180-023-01384-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01384-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01384-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gary L. Rosner, 2005. "Bayesian Monitoring of Clinical Trials with Failure-Time Endpoints," Biometrics, The International Biometric Society, vol. 61(1), pages 239-245, March.
    2. Ming-Hui Chen & Joseph G. Ibrahim & Peter Lam & Alan Yu & Yuanye Zhang, 2011. "Bayesian Design of Noninferiority Trials for Medical Devices Using Historical Data," Biometrics, The International Biometric Society, vol. 67(3), pages 1163-1170, September.
    3. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    4. Barry Arnold & Robert Beaver & Richard Groeneveld & William Meeker, 1993. "The nontruncated marginal of a truncated bivariate normal distribution," Psychometrika, Springer;The Psychometric Society, vol. 58(3), pages 471-488, September.
    5. Wenqing Li & Ming-Hui Chen & Xiaojing Wang & Dipak K. Dey, 2018. "Bayesian Design of Non-inferiority Clinical Trials Via the Bayes Factor," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 439-459, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George J Borjas & Ilpo Kauppinen & Panu Poutvaara, 2019. "Self-selection of Emigrants: Theory and Evidence on Stochastic Dominance in Observable and Unobservable Characteristics," The Economic Journal, Royal Economic Society, vol. 129(617), pages 143-171.
    2. Lei Liu & Zhihua Sun, 2017. "Kernel-based global MLE of partial linear random effects models for longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 615-635, July.
    3. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    4. L.M. LaVange & E.M. Alt & J.G. Ibrahim, 2023. "Discussion of “Optimal test procedures for multiple hypotheses controlling the familywise expected loss” by Willi Maurer, Frank Bretz, and Xiaolei Xun," Biometrics, The International Biometric Society, vol. 79(4), pages 2802-2805, December.
    5. Cruz Lopez, Jorge A. & Harris, Jeffrey H. & Hurlin, Christophe & Pérignon, Christophe, 2017. "CoMargin," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(5), pages 2183-2215, October.
      • Jorge A. Cruz Lopez & Jeffrey H. Harris & Christophe Hurlin & Christophe Pérignon, 2015. "CoMargin," Working Papers halshs-00979440, HAL.
      • Jorge Cruz Lopez & Jeffrey Harris & Christophe Hurlin & Christophe Pérignon, 2017. "CoMargin," Post-Print hal-03579309, HAL.
    6. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    7. David Elal-Olivero & Juan F. Olivares-Pacheco & Osvaldo Venegas & Heleno Bolfarine & Héctor W. Gómez, 2020. "On Properties of the Bimodal Skew-Normal Distribution and an Application," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
    8. Basso, Rodrigo M. & Lachos, Víctor H. & Cabral, Celso Rômulo Barbosa & Ghosh, Pulak, 2010. "Robust mixture modeling based on scale mixtures of skew-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2926-2941, December.
    9. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    10. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    11. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    12. Mehdi Amiri & Ahad Jamalizadeh & Mina Towhidi, 2015. "Inference and further probabilistic properties of the $$ SUN_{n,2}$$ S U N n , 2 -distribution," Statistical Papers, Springer, vol. 56(4), pages 1071-1098, November.
    13. Melkamu Molla Ferede & Samuel Mwalili & Getachew Dagne & Simon Karanja & Workagegnehu Hailu & Mahmoud El-Morshedy & Afrah Al-Bossly, 2022. "A Semiparametric Bayesian Joint Modelling of Skewed Longitudinal and Competing Risks Failure Time Data: With Application to Chronic Kidney Disease," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
    14. Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
    15. Ming-Hui Chen & Joseph G. Ibrahim & Donglin Zeng & Kuolung Hu & Catherine Jia, 2014. "Bayesian design of superiority clinical trials for recurrent events data with applications to bleeding and transfusion events in myelodyplastic syndrome," Biometrics, The International Biometric Society, vol. 70(4), pages 1003-1013, December.
    16. Chabé-Ferret, Sylvain, 2012. "Matching vs Differencing when Estimating Treatment Effects with Panel Data: the Example of the Effect of Job Training Programs on Earnings," LERNA Working Papers 12.24.381, LERNA, University of Toulouse.
    17. Hea-Jung Kim, 2015. "A best linear threshold classification with scale mixture of skew normal populations," Computational Statistics, Springer, vol. 30(1), pages 1-28, March.
    18. Alecos Papadopoulos & Christopher F. Parmeter & Subal C. Kumbhakar, 2021. "Modeling dependence in two-tier stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 56(2), pages 85-101, December.
    19. Dey, Dipak K. & Liu, Junfeng, 2005. "A new construction for skew multivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 323-344, August.
    20. Nian-Sheng Tang & De-Wang Li & An-Min Tang, 2017. "Semiparametric Bayesian inference on generalized linear measurement error models," Statistical Papers, Springer, vol. 58(4), pages 1091-1113, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-023-01384-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.