IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v10y2018i2d10.1007_s12561-017-9200-5.html
   My bibliography  Save this article

Bayesian Design of Non-inferiority Clinical Trials Via the Bayes Factor

Author

Listed:
  • Wenqing Li

    (Ventana Medical Systems, Inc.)

  • Ming-Hui Chen

    (University of Connecticut)

  • Xiaojing Wang

    (University of Connecticut)

  • Dipak K. Dey

    (University of Connecticut)

Abstract

We develop a Bayes factor-based approach for the design of non-inferiority clinical trials with a focus on controlling type I error and power. Historical data are incorporated in the Bayesian design via the power prior discussed in Ibrahim and Chen (Stat Sci 15:46–60, 2000). The properties of the proposed method are examined in detail. An efficient simulation-based computational algorithm is developed to calculate the Bayes factor, type I error, and power. The proposed methodology is applied to the design of a non-inferiority medical device clinical trial.

Suggested Citation

  • Wenqing Li & Ming-Hui Chen & Xiaojing Wang & Dipak K. Dey, 2018. "Bayesian Design of Non-inferiority Clinical Trials Via the Bayes Factor," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 439-459, August.
  • Handle: RePEc:spr:stabio:v:10:y:2018:i:2:d:10.1007_s12561-017-9200-5
    DOI: 10.1007/s12561-017-9200-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-017-9200-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-017-9200-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Irene Klugkist & Bernet Kato & Herbert Hoijtink, 2005. "Bayesian model selection using encompassing priors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 57-69, February.
    2. Ming-Hui Chen & Joseph G. Ibrahim & Peter Lam & Alan Yu & Yuanye Zhang, 2011. "Bayesian Design of Noninferiority Trials for Medical Devices Using Historical Data," Biometrics, The International Biometric Society, vol. 67(3), pages 1163-1170, September.
    3. M'Lan, Cyr Emile & Joseph, Lawrence & Wolfson, David B., 2006. "Bayesian Sample Size Determination for Case-Control Studies," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 760-772, June.
    4. Joseph G. Ibrahim & Ming-Hui Chen & H. Amy Xia & Thomas Liu, 2012. "Bayesian Meta-Experimental Design: Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes," Biometrics, The International Biometric Society, vol. 68(2), pages 578-586, June.
    5. Fulvio De Santis, 2007. "Using historical data for Bayesian sample size determination," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 95-113, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L.M. LaVange & E.M. Alt & J.G. Ibrahim, 2023. "Discussion of “Optimal test procedures for multiple hypotheses controlling the familywise expected loss” by Willi Maurer, Frank Bretz, and Xiaolei Xun," Biometrics, The International Biometric Society, vol. 79(4), pages 2802-2805, December.
    2. Ming-Hui Chen & Joseph G. Ibrahim & Donglin Zeng & Kuolung Hu & Catherine Jia, 2014. "Bayesian design of superiority clinical trials for recurrent events data with applications to bleeding and transfusion events in myelodyplastic syndrome," Biometrics, The International Biometric Society, vol. 70(4), pages 1003-1013, December.
    3. Md. Tuhin Sheikh & Ming-Hui Chen & Jonathan A. Gelfond & Joseph G. Ibrahim, 2022. "A Power Prior Approach for Leveraging External Longitudinal and Competing Risks Survival Data Within the Joint Modeling Framework," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 318-336, July.
    4. Matthew A. Psioda & Kuolung Hu & Yang Zhang & Jean Pan & Joseph G. Ibrahim, 2020. "Bayesian design of biosimilars clinical programs involving multiple therapeutic indications," Biometrics, The International Biometric Society, vol. 76(2), pages 630-642, June.
    5. Wenlin Yuan & Ming-Hui Chen & John Zhong, 2022. "Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 197-215, July.
    6. Jörg Martin & Clemens Elster, 2021. "The variation of the posterior variance and Bayesian sample size determination," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1135-1155, October.
    7. Bhramar Mukherjee & Jaeil Ahn & Stephen B. Gruber & Malay Ghosh & Nilanjan Chatterjee, 2010. "Case–Control Studies of Gene–Environment Interaction: Bayesian Design and Analysis," Biometrics, The International Biometric Society, vol. 66(3), pages 934-948, September.
    8. Francesco Bartolucci & Alessio Farcomeni & Luisa Scaccia, 2017. "A Nonparametric Multidimensional Latent Class IRT Model in a Bayesian Framework," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 952-978, December.
    9. Ming-Hui Chen & Joseph G. Ibrahim & Peter Lam & Alan Yu & Yuanye Zhang, 2011. "Bayesian Design of Noninferiority Trials for Medical Devices Using Historical Data," Biometrics, The International Biometric Society, vol. 67(3), pages 1163-1170, September.
    10. Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
    11. Danila Azzolina & Paola Berchialla & Silvia Bressan & Liviana Da Dalt & Dario Gregori & Ileana Baldi, 2022. "A Bayesian Sample Size Estimation Procedure Based on a B-Splines Semiparametric Elicitation Method," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
    12. Pierpaolo Brutti & Fulvio Santis & Stefania Gubbiotti, 2014. "Bayesian-frequentist sample size determination: a game of two priors," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 133-151, August.
    13. Haiyan Zheng & Thomas Jaki & James M.S. Wason, 2023. "Bayesian sample size determination using commensurate priors to leverage preexperimental data," Biometrics, The International Biometric Society, vol. 79(2), pages 669-683, June.
    14. Valeria Sambucini, 2021. "Bayesian Sequential Monitoring of Single-Arm Trials: A Comparison of Futility Rules Based on Binary Data," IJERPH, MDPI, vol. 18(16), pages 1-17, August.
    15. Fulvio De Santis & Stefania Gubbiotti, 2021. "Sample Size Requirements for Calibrated Approximate Credible Intervals for Proportions in Clinical Trials," IJERPH, MDPI, vol. 18(2), pages 1-11, January.
    16. Gordon Anderson, Alessio Farcomeni, Maria Grazia Pittau and Roberto Zelli, 2019. "Multidimensional Nation Wellbeing, More Equal yet More Polarized: An Analysis of the Progress of Human Development Since 1990," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(1), pages 1-22, March.
    17. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    18. Oh, Man-Suk, 2014. "Bayesian comparison of models with inequality and equality constraints," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 176-182.
    19. Bartolucci, Francesco & Scaccia, Luisa & Farcomeni, Alessio, 2012. "Bayesian inference through encompassing priors and importance sampling for a class of marginal models for categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4067-4080.
    20. Fulvio De Santis & Stefania Gubbiotti, 2021. "On the predictive performance of a non-optimal action in hypothesis testing," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 689-709, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:10:y:2018:i:2:d:10.1007_s12561-017-9200-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.