IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i1d10.1007_s00180-020-01013-y.html
   My bibliography  Save this article

Dirichlet process mixtures under affine transformations of the data

Author

Listed:
  • Julyan Arbel

    (Université Grenoble Alpes)

  • Riccardo Corradin

    (University of Milano Bicocca)

  • Bernardo Nipoti

    (University of Milano Bicocca)

Abstract

Location-scale Dirichlet process mixtures of Gaussians (DPM-G) have proved extremely useful in dealing with density estimation and clustering problems in a wide range of domains. Motivated by an astronomical application, in this work we address the robustness of DPM-G models to affine transformations of the data, a natural requirement for any sensible statistical method for density estimation and clustering. First, we devise a coherent prior specification of the model which makes posterior inference invariant with respect to affine transformations of the data. Second, we formalise the notion of asymptotic robustness under data transformation and show that mild assumptions on the true data generating process are sufficient to ensure that DPM-G models feature such a property. Our investigation is supported by an extensive simulation study and illustrated by the analysis of an astronomical dataset consisting of physical measurements of stars in the field of the globular cluster NGC 2419.

Suggested Citation

  • Julyan Arbel & Riccardo Corradin & Bernardo Nipoti, 2021. "Dirichlet process mixtures under affine transformations of the data," Computational Statistics, Springer, vol. 36(1), pages 577-601, March.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01013-y
    DOI: 10.1007/s00180-020-01013-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-01013-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-01013-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Petrone & J. Rousseau & C. Scricciolo, 2014. "Bayes and empirical Bayes: do they merge?," Biometrika, Biometrika Trust, vol. 101(2), pages 285-302.
    2. Wu, Yuefeng & Ghosal, Subhashis, 2010. "The L1-consistency of Dirichlet mixtures in multivariate Bayesian density estimation," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2411-2419, November.
    3. Krnjajic, Milovan & Kottas, Athanasios & Draper, David, 2008. "Parametric and nonparametric Bayesian model specification: A case study involving models for count data," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2110-2128, January.
    4. repec:dau:papers:123456789/10788 is not listed on IDEAS
    5. Antonio Lijoi & Igor Pruenster, 2009. "Distributional Properties of means of Random Probability Measures," ICER Working Papers - Applied Mathematics Series 22-2009, ICER - International Centre for Economic Research.
    6. Antonio Lijoi & Igor Prünster, 2009. "Distributional properties of means of random probability measures," Carlo Alberto Notebooks 120, Collegio Carlo Alberto.
    7. Antonio Canale & Bruno Scarpa, 2016. "Bayesian nonparametric location–scale–shape mixtures," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 113-130, March.
    8. Edoardo Otranto & Giampiero Gallo, 2002. "A Nonparametric Bayesian Approach To Detect The Number Of Regimes In Markov Switching Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 477-496.
    9. Weining Shen & Surya T. Tokdar & Subhashis Ghosal, 2013. "Adaptive Bayesian multivariate density estimation with Dirichlet mixtures," Biometrika, Biometrika Trust, vol. 100(3), pages 623-640.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    2. repec:dau:papers:123456789/13437 is not listed on IDEAS
    3. Antonio Lijoi & Igor Prünster, 2014. "Discussion of “On simulation and properties of the stable law” by L. Devroye and L. James," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 371-377, August.
    4. Cabras, Stefano & Fidrmuc, Jan & de Dios Tena Horrillo, Juan, 2017. "Minimum wage and employment: Escaping the parametric straitjacket," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-20.
    5. José J. Quinlan & Fernando A. Quintana & Garritt L. Page, 2021. "On a class of repulsive mixture models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 445-461, June.
    6. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    7. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    8. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    9. Giampiero Gallo & Edoardo Otranto, 2006. "Volatility Transmission Across Markets: A Multi-Chain Markov Switching Model," Econometrics Working Papers Archive wp2006_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    10. Fatnassi, Ibrahim & Slim, Chaouachi & Ftiti, Zied & Ben Maatoug, Abderrazek, 2014. "Effects of monetary policy on the REIT returns: Evidence from the United Kingdom," Research in International Business and Finance, Elsevier, vol. 32(C), pages 15-26.
    11. Moawia Alghalith, 2022. "Methods in Econophysics: Estimating the Probability Density and Volatility," Papers 2301.10178, arXiv.org.
    12. Bäuerle Nicole & Gilitschenski Igor & Hanebeck Uwe, 2015. "Exact and approximate hidden Markov chain filters based on discrete observations," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 159-176, December.
    13. Zhao, Yanyun, 2015. "Bayesian Linear Regression with Conditional Heteroskedasticity," DES - Working Papers. Statistics and Econometrics. WS ws1504, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Christina Erlwein & Rogemar Mamon, 2009. "An online estimation scheme for a Hull–White model with HMM-driven parameters," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 87-107, March.
    15. Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
    16. Yong Song, 2014. "Modelling Regime Switching And Structural Breaks With An Infinite Hidden Markov Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 825-842, August.
    17. A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
    18. Abdolnasser Sadeghkhani & Yingwei Peng & Chunfang Devon Lin, 2019. "A Parametric Bayesian Approach in Density Ratio Estimation," Stats, MDPI, vol. 2(2), pages 1-13, March.
    19. Minerva Mukhopadhyay & Didong Li & David B. Dunson, 2020. "Estimating densities with non‐linear support by using Fisher–Gaussian kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1249-1271, December.
    20. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
    21. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01013-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.