IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i1d10.1007_s00180-018-0829-4.html
   My bibliography  Save this article

SamP2CeT: an interactive computer program for sample size and power calculation for two-level cost-effectiveness trials

Author

Listed:
  • Md Abu Manju

    () (Maastricht University)

  • Math J. J. M. Candel

    (Maastricht University)

  • Gerard J. P. van Breukelen

    (Maastricht University)

Abstract

The cost-effectiveness of interventions (e.g. new medical therapies or health care technologies) is often evaluated in randomized clinical trials, where individuals are nested within clusters, for instance patients within general practices. In such two-level cost-effectiveness trials, one can randomly assign treatments to individuals within clusters (multicentre trial) or to entire clusters (cluster randomized trial). Such trials need careful planning to evaluate the cost-effectiveness of interventions within the available research resources. The optimal number of clusters and the optimal number of subjects per cluster for both types of cost-effectiveness trials can be determined by using optimal design theory. However, the construction of the optimal design requires information on model parameters, which may be unknown at the planning stage of a trial. To overcome this problem, a maximin strategy is employed. We have developed a computer program SamP2CeT in R to perform these sample size calculations. SamP2CeT provides a graphical user interface which enables the researchers to optimize the numbers of clusters and subjects per cluster in their cost-effectiveness trial as a function of study costs and outcome variances. In case of insufficient knowledge on model parameters, SamP2CeT also provides safe numbers of clusters and subjects per cluster, based on a maximin strategy. SamP2CeT can be used to calculate the smallest budget needed for a user-specified power level, the largest power attainable with a user-specified budget, and also has the facility to calculate the power for a user-specified design. Recent methodological developments on sample size and power calculation for two-level cost-effectiveness trials have been implemented in SamP2CeT. This program is user-friendly, as illustrated for two published cost-effectiveness trials.

Suggested Citation

  • Md Abu Manju & Math J. J. M. Candel & Gerard J. P. van Breukelen, 2019. "SamP2CeT: an interactive computer program for sample size and power calculation for two-level cost-effectiveness trials," Computational Statistics, Springer, vol. 34(1), pages 47-70, March.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0829-4
    DOI: 10.1007/s00180-018-0829-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0829-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea Manca & Nigel Rice & Mark J. Sculpher & Andrew H. Briggs, 2005. "Assessing generalisability by location in trial‐based cost‐effectiveness analysis: the use of multilevel models," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 471-485, May.
    2. Richard Grieve & Richard Nixon & Simon G. Thompson & John Cairns, 2007. "Multilevel models for estimating incremental net benefits in multinational studies," Health Economics, John Wiley & Sons, Ltd., vol. 16(8), pages 815-826, August.
    3. Tokola, K. & Larocque, D. & Nevalainen, J. & Oja, H., 2011. "Power, sample size and sampling costs for clustered data," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 852-860, July.
    4. Tom A. B. Snijders & Roel J. Bosker, 1993. "Standard Errors and Sample Sizes for Two-Level Research," Journal of Educational and Behavioral Statistics, , vol. 18(3), pages 237-259, September.
    5. Xiaofeng Liu, 2003. "Statistical Power and Optimum Sample Allocation Ratio for Treatment and Control Having Unequal Costs per Unit of Randomization," Journal of Educational and Behavioral Statistics, , vol. 28(3), pages 231-248, September.
    6. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    7. Bornkamp, Björn & Pinheiro, José & Bretz, Frank, 2009. "MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i07).
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0829-4. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.