IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v29y2014i1p51-63.html
   My bibliography  Save this article

minPtest: a resampling based gene region-level testing procedure for genetic case-control studies

Author

Listed:
  • Stefanie Hieke
  • Harald Binder
  • Alexandra Nieters
  • Martin Schumacher

Abstract

Current technologies generate a huge number of single nucleotide polymorphism (SNP) genotype measurements in case-control studies. The resulting multiple testing problem can be ameliorated by considering candidate gene regions. The minPtest R package provides the first widely accessible implementation of a gene region-level summary for each candidate gene using the min $$P$$ test. The latter is a permutation-based method that can be based on different univariate tests per SNP. The package brings together three different kinds of tests which were scattered over several R packages, and automatically selects the most appropriate one for the study design at hand. The implementation of the minPtest integrates two different parallel computing packages, thus optimally leveraging available resources for speedy results. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Stefanie Hieke & Harald Binder & Alexandra Nieters & Martin Schumacher, 2014. "minPtest: a resampling based gene region-level testing procedure for genetic case-control studies," Computational Statistics, Springer, vol. 29(1), pages 51-63, February.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:1:p:51-63
    DOI: 10.1007/s00180-012-0391-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-012-0391-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-012-0391-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Royston & Gareth Ambler, 1999. "Multivariable fractional polynomials," Stata Technical Bulletin, StataCorp LLC, vol. 8(43).
    2. W. Sauerbrei & P. Royston, 1999. "Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 71-94.
    3. Manuel Eugster & Jochen Knaus & Christine Porzelius & Markus Schmidberger & Esmeralda Vicedo, 2011. "Hands-on tutorial for parallel computing with R," Computational Statistics, Springer, vol. 26(2), pages 219-239, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harald Binder & Hans Kestler & Matthias Schmid, 2014. "Proceedings of Reisensburg 2011," Computational Statistics, Springer, vol. 29(1), pages 1-2, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geweke, John & Petrella, Lea, 2014. "Likelihood-based inference for regular functions with fractional polynomial approximations," Journal of Econometrics, Elsevier, vol. 183(1), pages 22-30.
    2. Marco Caliendo & Stefan Tübbicke, 2020. "New evidence on long-term effects of start-up subsidies: matching estimates and their robustness," Empirical Economics, Springer, vol. 59(4), pages 1605-1631, October.
    3. Gustavo Soutinho & Luís Meira-Machado, 2022. "Methods for checking the Markov condition in multi-state survival data," Computational Statistics, Springer, vol. 37(2), pages 751-780, April.
    4. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    5. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    6. Marisa Rifada & Vita Ratnasari & Purhadi Purhadi, 2023. "Parameter Estimation and Hypothesis Testing of The Bivariate Polynomial Ordinal Logistic Regression Model," Mathematics, MDPI, vol. 11(3), pages 1-12, January.
    7. Patrick Royston, 2006. "Explained variation for survival models," Stata Journal, StataCorp LLC, vol. 6(1), pages 83-96, March.
    8. Patrick Royston, 2012. "Tools to simulate realistic censored survival-time distributions," Stata Journal, StataCorp LLC, vol. 12(4), pages 639-654, December.
    9. Schäfer, Dorothea & Werwatz, Axel & Zimmermann, Volker, 2004. "The Determinants of Debt and (Private) Equity Financing : The Case of Young, Innovative SMEs from Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(3), pages 225-248.
    10. Farber, Steven & Li, Xiao, 2013. "Urban sprawl and social interaction potential: an empirical analysis of large metropolitan regions in the United States," Journal of Transport Geography, Elsevier, vol. 31(C), pages 267-277.
    11. Armando Rungi & Davide Del Prete, 2017. "The 'Smile Curve': where Value is Added along Supply Chains," Working Papers 05/2017, IMT School for Advanced Studies Lucca, revised Mar 2017.
    12. Sauerbrei, W. & Meier-Hirmer, C. & Benner, A. & Royston, P., 2006. "Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3464-3485, August.
    13. Sauerbrei, Willi & Royston, Patrick & Zapien, Karina, 2007. "Detecting an interaction between treatment and a continuous covariate: A comparison of two approaches," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 4054-4063, May.
    14. Binder, Harald & Sauerbrei, Willi, 2008. "Increasing the usefulness of additive spline models by knot removal," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5305-5318, August.
    15. William D. Dupont, 2010. "Review of Multivariable Model-building: A Pragmatic Approach to Regression Analysis Based on Fractional Polynomials for Modeling Continuous Variables, by Royston and Sauerbrei," Stata Journal, StataCorp LLC, vol. 10(2), pages 297-302, June.
    16. Suvra Pal & Hongbo Yu & Zachary D. Loucks & Ian M. Harris, 2020. "Illustration of the Flexibility of Generalized Gamma Distribution in Modeling Right Censored Survival Data: Analysis of Two Cancer Datasets," Annals of Data Science, Springer, vol. 7(1), pages 77-90, March.
    17. Patrick Royston, 2007. "Profile likelihood for estimation and confidence intervals," Stata Journal, StataCorp LLC, vol. 7(3), pages 376-387, September.
    18. Patrick Royston, 2004. "Multiple imputation of missing values," Stata Journal, StataCorp LLC, vol. 4(3), pages 227-241, September.
    19. Daniel McNeish & Denis Dumas & Dario Torre & Neil Rice, 2022. "Modelling time to maximum competency in medical student progress tests," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2007-2034, October.
    20. Ali Fakih & Walid Marrouch, 2019. "Environmental Kuznets Curve, a Mirage? A Non-parametric Analysis for MENA Countries," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 113-119, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:1:p:51-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.