IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v24y2009i1p127-144.html
   My bibliography  Save this article

Variable selection in multivariate methods using global score estimation

Author

Abstract

No abstract is available for this item.

Suggested Citation

  • Kaoru Fueda & Masaya Iizuka & Yuichi Mori, 2009. "Variable selection in multivariate methods using global score estimation," Computational Statistics, Springer, vol. 24(1), pages 127-144, February.
  • Handle: RePEc:spr:compst:v:24:y:2009:i:1:p:127-144
    DOI: 10.1007/s00180-008-0109-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-008-0109-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-008-0109-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yutaka Kano & Akira Harada, 2000. "Stepwise variable selection in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 7-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Brusco & Renu Singh & Douglas Steinley, 2009. "Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 705-726, December.
    2. Brusco, Michael J. & Steinley, Douglas, 2011. "Exact and approximate algorithms for variable selection in linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 123-131, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pacheco, JoaquĆ­n & Casado, Silvia & Porras, Santiago, 2013. "Exact methods for variable selection in principal component analysis: Guide functions and pre-selection," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 95-111.
    2. Tangian, Andranik S., 2017. "Selection of questions for VAAs and the VAA-based elections," Working Paper Series in Economics 100, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    3. Lash, Michael T. & Sajeesh, S. & Araz, Ozgur M., 2023. "Predicting mobility using limited data during early stages of a pandemic," Journal of Business Research, Elsevier, vol. 157(C).
    4. Brusco, Michael J. & Steinley, Douglas, 2011. "Exact and approximate algorithms for variable selection in linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 123-131, January.
    5. Brusco, Michael J., 2014. "A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 38-53.
    6. Kristine Hogarty & Jeffrey Kromrey & John Ferron & Constance Hines, 2004. "Selection of variables in exploratory factor analysis: An empirical comparison of a stepwise and traditional approach," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 593-611, December.
    7. Tanguiane, Andranick S., 2019. "Combining the third vote with traditional elections," Working Paper Series in Economics 132, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    8. Michael Brusco & Renu Singh & Douglas Steinley, 2009. "Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 705-726, December.
    9. Ulrich Schroeders & Oliver Wilhelm & Gabriel Olaru, 2016. "Meta-Heuristics in Short Scale Construction: Ant Colony Optimization and Genetic Algorithm," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:24:y:2009:i:1:p:127-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.