IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v166y2021i1d10.1007_s10584-021-03114-z.html
   My bibliography  Save this article

Attributable human-induced changes in the magnitude of flooding in the Houston, Texas region during Hurricane Harvey

Author

Listed:
  • Michael Wehner

    (Lawrence Berkeley National Laboratory)

  • Christopher Sampson

    (Fathom)

Abstract

The human influence on precipitation during tropical cyclones due to the global warming is now well documented in the literature. Several studies have found increases in Hurricane Harvey’s total precipitation over the Greater Houston area ranging from the Clausius-Clapeyron limit of 7% to as much as 38% locally. Here we use a hydraulic model to translate these attribution statements about precipitation to statements about the resultant flooding and associated damages. We find that while the attributable increase in the total volume of flood waters is the same as the attributable increase in precipitation, the attributable increase in the total area of the flood is less. However, we also find that in the most heavily flooded parts of Houston, the local attributable increases in flood area and volume are substantially larger than the increase in total precipitation. The results of this storyline attribution analysis of the Houston flood area are used to make an intuitive best estimate of the cost of Hurricane Harvey attributable to anthropogenic global warming as thirteen billion US dollars.

Suggested Citation

  • Michael Wehner & Christopher Sampson, 2021. "Attributable human-induced changes in the magnitude of flooding in the Houston, Texas region during Hurricane Harvey," Climatic Change, Springer, vol. 166(1), pages 1-13, May.
  • Handle: RePEc:spr:climat:v:166:y:2021:i:1:d:10.1007_s10584-021-03114-z
    DOI: 10.1007/s10584-021-03114-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03114-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03114-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christina M. Patricola & Michael F. Wehner, 2018. "Anthropogenic influences on major tropical cyclone events," Nature, Nature, vol. 563(7731), pages 339-346, November.
    2. David J. Frame & Michael F. Wehner & Ilan Noy & Suzanne M. Rosier, 2020. "The economic costs of Hurricane Harvey attributable to climate change," Climatic Change, Springer, vol. 160(2), pages 271-281, May.
    3. Nathalie Schaller & Alison L. Kay & Rob Lamb & Neil R. Massey & Geert Jan van Oldenborgh & Friederike E. L. Otto & Sarah N. Sparrow & Robert Vautard & Pascal Yiou & Ian Ashpole & Andy Bowery & Susan M, 2016. "Human influence on climate in the 2014 southern England winter floods and their impacts," Nature Climate Change, Nature, vol. 6(6), pages 627-634, June.
    4. Wei Zhang & Gabriele Villarini & Gabriel A. Vecchi & James A. Smith, 2018. "Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston," Nature, Nature, vol. 563(7731), pages 384-388, November.
    5. James P. Kossin, 2018. "A global slowdown of tropical-cyclone translation speed," Nature, Nature, vol. 558(7708), pages 104-107, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick T. Brown, 2023. "When the fraction of attributable risk does not inform the impact associated with anthropogenic climate change," Climatic Change, Springer, vol. 176(8), pages 1-11, August.
    2. Kevin T. Smiley & Ilan Noy & Michael F. Wehner & Dave Frame & Christopher C. Sampson & Oliver E. J. Wing, 2022. "Social inequalities in climate change-attributed impacts of Hurricane Harvey," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Luke J. Harrington & Kristie L. Ebi & David J. Frame & Friederike E. L. Otto, 2022. "Integrating attribution with adaptation for unprecedented future heatwaves," Climatic Change, Springer, vol. 172(1), pages 1-7, May.
    4. Cavallo, Eduardo A. & Gómez, Santiago & Noy, Ilan & Strobl, Eric, 2024. "Climate Change, Hurricanes, and Sovereign Debt in the Caribbean Basin," IDB Publications (Working Papers) 13351, Inter-American Development Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Clarke & Friederike Otto & Richard Jones, 2023. "When don’t we need a new extreme event attribution study?," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    2. A. Sebastian & D. J. Bader & C. M. Nederhoff & T. W. B. Leijnse & J. D. Bricker & S. G. J. Aarninkhof, 2021. "Hindcast of pluvial, fluvial, and coastal flood damage in Houston, Texas during Hurricane Harvey (2017) using SFINCS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2343-2362, December.
    3. Kevin T. Smiley & Ilan Noy & Michael F. Wehner & Dave Frame & Christopher C. Sampson & Oliver E. J. Wing, 2022. "Social inequalities in climate change-attributed impacts of Hurricane Harvey," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Billings, Stephen B. & Gallagher, Emily A. & Ricketts, Lowell, 2022. "Let the rich be flooded: The distribution of financial aid and distress after hurricane harvey," Journal of Financial Economics, Elsevier, vol. 146(2), pages 797-819.
    5. Reza Marsooli & Ning Lin, 2020. "Impacts of climate change on hurricane flood hazards in Jamaica Bay, New York," Climatic Change, Springer, vol. 163(4), pages 2153-2171, December.
    6. Lauri Peterson, 2021. "Silver Lining to Extreme Weather Events? Democracy and Climate Change Mitigation," Global Environmental Politics, MIT Press, vol. 21(1), pages 23-53, Winter.
    7. Joowon Im, 2019. "Green Streets to Serve Urban Sustainability: Benefits and Typology," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    8. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Chin‐Hsien Yu & Bruce A. McCarl & Jian‐Da Zhu, 2022. "Market response to typhoons: The role of information and expectations," Southern Economic Journal, John Wiley & Sons, vol. 89(2), pages 496-521, October.
    10. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    11. Carlynn Fagnant & Avantika Gori & Antonia Sebastian & Philip B. Bedient & Katherine B. Ensor, 2020. "Characterizing spatiotemporal trends in extreme precipitation in Southeast Texas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1597-1621, November.
    12. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    13. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    14. Tim Slack & Vanessa Parks & Lynsay Ayer & Andrew M. Parker & Melissa L. Finucane & Rajeev Ramchand, 2020. "Natech or natural? An analysis of hazard perceptions, institutional trust, and future storm worry following Hurricane Harvey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1207-1224, July.
    15. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Linze Li & Chengsheng Jiang & Raghu Murtugudde & Xin-Zhong Liang & Amir Sapkota, 2021. "Global Population Exposed to Extreme Events in the 150 Most Populated Cities of the World: Implications for Public Health," IJERPH, MDPI, vol. 18(3), pages 1-11, February.
    17. John Miller & Guilherme Vieira Silva & Darrell Strauss, 2023. "Divergence of tropical cyclone hazard based on wind-weighted track distributions in the Coral Sea, over 50 years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2591-2617, March.
    18. Mallucci, Enrico, 2022. "Natural disasters, climate change, and sovereign risk," Journal of International Economics, Elsevier, vol. 139(C).
    19. Friederike E. L. Otto & Sjoukje Philip & Sarah Kew & Sihan Li & Andrew King & Heidi Cullen, 2018. "Attributing high-impact extreme events across timescales—a case study of four different types of events," Climatic Change, Springer, vol. 149(3), pages 399-412, August.
    20. Edward Helderop & Tony H. Grubesic, 2022. "Hurricane storm surge: toward a normalized damage index for coastal regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1179-1197, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:166:y:2021:i:1:d:10.1007_s10584-021-03114-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.