IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i2d10.1007_s10584-020-02788-1.html
   My bibliography  Save this article

Future changes in precipitation-caused landslide frequency in British Columbia

Author

Listed:
  • Stephen R. Sobie

    (University of Victoria)

Abstract

Landslide hazards in British Columbia are mainly caused by precipitation and can result in significant damage and fatalities. Anthropogenic climate change is expected to increase precipitation frequency and intensity in the winter, spring, and fall in British Columbia (BC), potentially resulting in increased frequency of landslide hazard. Quantifying the effect of changing precipitation on future landslide hazard across the varying topographic and climatic conditions in BC requires detailed projections of future precipitation. Here, the operational Landslide Hazard Assessment for Situational Awareness (LHASA) model is used with high-resolution, statistically downscaled daily precipitation to generate detailed simulations of landslide hazard in BC over the twenty-first century. Historical evaluation of the LHASA model is performed using a station-based, gridded observational precipitation dataset. Classification of observed landslide dates and locations as hazard events occurs as successfully as, or slightly better than, when LHASA is applied globally with satellite precipitation. Using the LHASA model with precipitation projections from 12 downscaled global climate models following RCP8.5 indicates that future landslide hazard frequency will increase from 16 days per year to 21 days per year (32%) on average by the 2050s for landslide susceptible regions in the province. Areas of the province currently with the most frequent landslide hazards (18 to 21 days per year), including the west coast and northern Rocky Mountains, are expected to see between 8 and 11 additional hazardous days (49 to 61% increases) per year. Most of the increased hazard frequency occurs during winter and fall, reflecting those seasons with the largest projected increases in single and multi-day precipitation. Risk assessments for regions in British Columbia vulnerable to landslides will need to account for increasing hazard due to climate change altered precipitation.

Suggested Citation

  • Stephen R. Sobie, 2020. "Future changes in precipitation-caused landslide frequency in British Columbia," Climatic Change, Springer, vol. 162(2), pages 465-484, September.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02788-1
    DOI: 10.1007/s10584-020-02788-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02788-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02788-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalia Kirschbaum & Robert Adler & Yang Hong & Stephanie Hill & Arthur Lerner-Lam, 2010. "A global landslide catalog for hazard applications: method, results, and limitations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 561-575, March.
    2. Christian Huggel & Nikolay Khabarov & Michael Obersteiner & Juan Ramírez, 2010. "Implementation and integrated numerical modeling of a landslide early warning system: a pilot study in Colombia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(2), pages 501-518, February.
    3. V. Kharin & F. Zwiers & X. Zhang & M. Wehner, 2013. "Changes in temperature and precipitation extremes in the CMIP5 ensemble," Climatic Change, Springer, vol. 119(2), pages 345-357, July.
    4. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulin Chen & Enze Chen & Jun Zhang & Jingxuan Zhu & Yuanyuan Xiao & Qiang Dai, 2023. "Investigation of Model Uncertainty in Rainfall-Induced Landslide Prediction under Changing Climate Conditions," Land, MDPI, vol. 12(9), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fhatuwani Sengani & François Mulenga, 2020. "Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
    2. S. Modugno & S. C. M. Johnson & P. Borrelli & E. Alam & N. Bezak & H. Balzter, 2022. "Analysis of human exposure to landslides with a GIS multiscale approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 387-412, May.
    3. Chelsea Dandridge & Thomas A. Stanley & Dalia B. Kirschbaum & Venkataraman Lakshmi, 2023. "Spatial and Temporal Analysis of Global Landslide Reporting Using a Decade of the Global Landslide Catalog," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    4. Weidong Wang & Jiaying Li & Xia Qu & Zheng Han & Pan Liu, 2019. "Prediction on landslide displacement using a new combination model: a case study of Qinglong landslide in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1121-1139, April.
    5. Xiang-Zhou Xu & Hong-Wu Zhang & Wen-Long Wang & Chao Zhao & Qiao Yan, 2015. "Quantitative monitoring of gravity erosion using a novel 3D surface measuring technique: validation and case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1927-1939, January.
    6. Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
    7. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    8. Alessandro Valletta & Andrea Carri & Andrea Segalini, 2023. "Alert threshold assessment based on equivalent displacements for the identification of potentially critical landslide events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1549-1570, January.
    9. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    10. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    11. Fanyu Zhang & Jianbing Peng & Xiaowei Huang & Hengxing Lan, 2021. "Hazard assessment and mitigation of non-seismically fatal landslides in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 785-804, March.
    12. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    13. Elias Garcia-Urquia & Kennet Axelsson, 2014. "The use of press data in the development of a database for rainfall-induced landslides in Tegucigalpa, Honduras, 1980–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 237-258, September.
    14. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
    15. Elin Spegel & Kristina Ek, 2022. "Valuing the Impacts of Landslides: A Choice Experiment Approach," Economics of Disasters and Climate Change, Springer, vol. 6(1), pages 163-181, March.
    16. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    17. Mustafa Kamal & Baolei Zhang & Jianfei Cao & Xin Zhang & Jun Chang, 2022. "Comparative Study of Artificial Neural Network and Random Forest Model for Susceptibility Assessment of Landslides Induced by Earthquake in the Western Sichuan Plateau, China," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    18. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    19. Jorge Castillo-Mateo & Jesús Asín & Ana C. Cebrián & Jesús Mateo-Lázaro & Jesús Abaurrea, 2023. "Bayesian Variable Selection in Generalized Extreme Value Regression: Modeling Annual Maximum Temperature," Mathematics, MDPI, vol. 11(3), pages 1-19, February.
    20. George Gaprindashvili & Cees Westen, 2016. "Generation of a national landslide hazard and risk map for the country of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 69-101, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02788-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.