IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v153y2019i1d10.1007_s10584-019-02373-1.html
   My bibliography  Save this article

The impact of extreme weather events on livestock populations: the case of the 2011 drought in Mexico

Author

Listed:
  • Guillermo N. Murray-Tortarolo

    (Cátedra CONACyT comisionado al Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México
    Instituto de Investigaciones en Ecosistemas y Sustentabilidad. Universidad Nacional Autónoma de México)

  • Víctor J. Jaramillo

    (Instituto de Investigaciones en Ecosistemas y Sustentabilidad. Universidad Nacional Autónoma de México)

Abstract

Extreme weather events represent a large risk to food production systems. In this study, we evaluated the impacts of the 2011–2012 drought in Mexico, the worst in the last 70 years, on free-ranged livestock populations to link extreme weather events and production. We also considered the potential prevalence of recurring droughts under two contrasting future climate scenarios to examine what could happen over this century. Our results showed that cattle and goat stocks decreased about 3% in response to the drought countrywide. Regionally, the changes in cattle and goat populations generally mimicked the precipitation anomaly, with the strongest reductions across the driest areas in central and northern Mexico. Our work showed that the biophysical and management components of livestock production interact depending on the regions and the type of livestock, leading to a mosaic of spatial responses. It seems that the management of large herds limits the economic viability of drought crisis management options such as the importation of fodder and water, or by moving the animals to other pastures. Sheep herds were much less affected since more than 50% of the total sheep stock is raised in wetter states, which showed a relatively small (~ − 10%) precipitation anomaly during the drought. Under the severe climate change scenario, a greater frequency of extremely dry years (once every 3 years) would have negative impacts on livestock production regionally. Climate change together with already existing trends in overgrazing and soil erosion could further increase the sensitivity of livestock production across the country. Graphical abstract

Suggested Citation

  • Guillermo N. Murray-Tortarolo & Víctor J. Jaramillo, 2019. "The impact of extreme weather events on livestock populations: the case of the 2011 drought in Mexico," Climatic Change, Springer, vol. 153(1), pages 79-89, March.
  • Handle: RePEc:spr:climat:v:153:y:2019:i:1:d:10.1007_s10584-019-02373-1
    DOI: 10.1007/s10584-019-02373-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02373-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02373-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boris Orlowsky & Sonia Seneviratne, 2012. "Global changes in extreme events: regional and seasonal dimension," Climatic Change, Springer, vol. 110(3), pages 669-696, February.
    2. Dieguez Cameroni, Francisco & Fort, Hugo, 2017. "Towards scientifically based management of extensive livestock farming in terms of ecological predator-prey modeling," Agricultural Systems, Elsevier, vol. 153(C), pages 127-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi & Mohammad Mehdi Moghimi, 2023. "Determining the most appropriate drought index using the random forest algorithm with an emphasis on agricultural drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 923-946, January.
    2. Emily Injete Amondo & Emmanuel Nshakira-Rukundo & Alisher Mirzabaev, 2023. "The effect of extreme weather events on child nutrition and health," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 571-596, June.
    3. Gloria Salmoral & Benjamin Ababio & Ian P. Holman, 2020. "Drought Impacts, Coping Responses and Adaptation in the UK Outdoor Livestock Sector: Insights to Increase Drought Resilience," Land, MDPI, vol. 9(6), pages 1-15, June.
    4. Haoyu Jin & Xiaohong Chen & Ruida Zhong & Yingjie Pan & Tongtiegang Zhao & Zhiyong Liu & Xinjun Tu, 2022. "Spatiotemporal distribution analysis of extreme precipitation in the Huaihe River Basin based on continuity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3627-3656, December.
    5. Arnold R. Salvacion, 2023. "Delineating village-level drought risk in Marinduque Island, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2993-3014, April.
    6. Tran, Thi Xuyen, 2021. "Typhoon and Agricultural Production Portfolio -Empirical Evidence for a Developing Economy," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242411, Verein für Socialpolitik / German Economic Association.
    7. Guillermo N. Murray-Tortarolo & Mario Martínez Salgado, 2021. "Drought as a driver of Mexico-US migration," Climatic Change, Springer, vol. 164(3), pages 1-11, February.
    8. Pentile Thong & Uttam Thangjam & Uttam Kumar Sahoo & Raul Pascalau & Piotr Prus & Laura Smuleac, 2023. "Climate-Induced Risk Assessment of Rural and Urban Agroforestry Managers of Aizawl District, Northeast India," Agriculture, MDPI, vol. 13(10), pages 1-17, October.
    9. Günther Schauberger & Martin Schönhart & Werner Zollitsch & Stefan J. Hörtenhuber & Leopold Kirner & Christian Mikovits & Johannes Baumgartner & Martin Piringer & Werner Knauder & Ivonne Anders & Konr, 2021. "Economic Risk Assessment by Weather-Related Heat Stress Indices for Confined Livestock Buildings: A Case Study for Fattening Pigs in Central Europe," Agriculture, MDPI, vol. 11(2), pages 1-22, February.
    10. Eva O. Arceo-Gómez & Danae Hernández-Cortés & Alejandro López-Feldman, 2020. "Droughts and rural households’ wellbeing: evidence from Mexico," Climatic Change, Springer, vol. 162(3), pages 1197-1212, October.
    11. Tran, Thi Xuyen, 2021. "Typhoon and Agricultural Production Portfolio Empirical Evidence for a Developing Economy," Working Paper 188/2021, Helmut Schmidt University, Hamburg.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianglin Huang & Tingbin Zhang & Guihua Yi & Dong He & Xiaobing Zhou & Jingji Li & Xiaojuan Bie & Jiaqing Miao, 2019. "Dynamic Changes of NDVI in the Growing Season of the Tibetan Plateau During the Past 17 Years and Its Response to Climate Change," IJERPH, MDPI, vol. 16(18), pages 1-21, September.
    2. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    3. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    4. Salvi Asefi-Najafabady & Karen L Vandecar & Anton Seimon & Peter Lawrence & Deborah Lawrence, 2018. "Climate change, population, and poverty: vulnerability and exposure to heat stress in countries bordering the Great Lakes of Africa," Climatic Change, Springer, vol. 148(4), pages 561-573, June.
    5. Michael Berlemann & Daniela Wenzel, 2018. "Precipitation and Economic Growth," CESifo Working Paper Series 7258, CESifo.
    6. Taís Maria Nunes Carvalho & Francisco Souza Filho, 2021. "Variational Mode Decomposition Hybridized With Gradient Boost Regression for Seasonal Forecast of Residential Water Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3431-3445, August.
    7. Holtermann, Linus & Rische, Marie-Christin, 2020. "The Subnational Effect of Temperature on Economic Production: A Disaggregated Analysis in European Regions," MPRA Paper 104606, University Library of Munich, Germany.
    8. S. E. Perkins-Kirkpatrick & C. J. White & L. V. Alexander & D. Argüeso & G. Boschat & T. Cowan & J. P. Evans & M. Ekström & E. C. J. Oliver & A. Phatak & A. Purich, 2016. "Natural hazards in Australia: heatwaves," Climatic Change, Springer, vol. 139(1), pages 101-114, November.
    9. Markus Stoffel & Thomas Mendlik & Michelle Schneuwly-Bollschweiler & Andreas Gobiet, 2014. "Possible impacts of climate change on debris-flow activity in the Swiss Alps," Climatic Change, Springer, vol. 122(1), pages 141-155, January.
    10. Michael Berlemann & Max Friedrich Steinhardt, 2017. "Climate Change, Natural Disasters, and Migration—a Survey of the Empirical Evidence," CESifo Economic Studies, CESifo Group, vol. 63(4), pages 353-385.
    11. Fort, Hugo & Dieguez, Francisco & Halty, Virginia & Lima, Juan Manuel Soares, 2017. "Two examples of application of ecological modeling to agricultural production: Extensive livestock farming and overyielding in grassland mixtures," Ecological Modelling, Elsevier, vol. 357(C), pages 23-34.
    12. Meng Zhang & Haipeng Yu & Andrew D. King & Yun Wei & Jianping Huang & Yu Ren, 2020. "Greater probability of extreme precipitation under 1.5 °C and 2 °C warming limits over East-Central Asia," Climatic Change, Springer, vol. 162(2), pages 603-619, September.
    13. Bakker, Craig & Zaitchik, Benjamin F. & Siddiqui, Sauleh & Hobbs, Benjamin F. & Broaddus, Elena & Neff, Roni A. & Haskett, Jonathan & Parker, Cindy L., 2018. "Shocks, seasonality, and disaggregation: Modelling food security through the integration of agricultural, transportation, and economic systems," Agricultural Systems, Elsevier, vol. 164(C), pages 165-184.
    14. Fort, Hugo & Grigera, Tomás S., 2021. "A method for predicting species trajectories tested with trees in barro colorado tropical forest," Ecological Modelling, Elsevier, vol. 446(C).
    15. Christoph Schär & Nikolina Ban & Erich M. Fischer & Jan Rajczak & Jürg Schmidli & Christoph Frei & Filippo Giorgi & Thomas R. Karl & Elizabeth J. Kendon & Albert M. G. Klein Tank & Paul A. O’Gorman & , 2016. "Percentile indices for assessing changes in heavy precipitation events," Climatic Change, Springer, vol. 137(1), pages 201-216, July.
    16. Dongmei Feng & Edward Beighley & Roozbeh Raoufi & John Melack & Yuanhao Zhao & Sam Iacobellis & Daniel Cayan, 2019. "Propagation of future climate conditions into hydrologic response from coastal southern California watersheds," Climatic Change, Springer, vol. 153(1), pages 199-218, March.
    17. Mohammad Hasan Mahmoudi & Mohammad Reza Najafi & Harsimrenjit Singh & Markus Schnorbus, 2021. "Spatial and temporal changes in climate extremes over northwestern North America: the influence of internal climate variability and external forcing," Climatic Change, Springer, vol. 165(1), pages 1-19, March.
    18. Balcha, Yodit & Macleod, Jamie, 2017. "Climate Change, Agricultural Production and Trade in Africa," Conference papers 332921, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Audrey Brouillet & Sylvie Joussaume, 2020. "More perceived but not faster evolution of heat stress than temperature extremes in the future," Climatic Change, Springer, vol. 162(2), pages 527-544, September.
    20. Yanting Chen & Liette Vasseur & Minsheng You, 2017. "Potential distribution of the invasive loblolly pine mealybug, Oracella acuta (Hemiptera: Pseudococcidae), in Asia under future climate change scenarios," Climatic Change, Springer, vol. 141(4), pages 719-732, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:153:y:2019:i:1:d:10.1007_s10584-019-02373-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.