IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v133y2015i2p193-208.html
   My bibliography  Save this article

Use of very high resolution climate model data for hydrological modelling: baseline performance and future flood changes

Author

Listed:
  • A. Kay
  • A. Rudd
  • H. Davies
  • E. Kendon
  • R. Jones

Abstract

Increasingly, data from Regional Climate Models (RCMs) are used to drive hydrological models, to investigate the potential water-related impacts of climate change, particularly for flood and droughts. Generally, some form of further downscaling of RCM data has been required, but recently the first decadal-length runs of very high resolution RCMs (with convection-permitting scales) have been performed. Here, a set of such runs for southern Britain has been used to drive a gridded hydrological model. Results using a 1.5 km RCM nested in a 12 km RCM driven by European-reanalysis boundary conditions show that the 1.5 km RCM generally performs worse than the 12 km RCM for simulating river flows in 32 example catchments. The clear spatial patterns of bias are consistent with bias patterns shown in the RCM precipitation data. Results using 1.5 and 12 km RCM runs for the current climate and a potential future climate (driven by GCM boundary conditions) show clear differences in projected changes in flood peaks. The 1.5 km RCM tends towards larger increases than the 12 km RCM, particularly in spring and winter. If robust, this could have important consequences for adaptation planning under climate change, but further research is required, particularly given the greater biases in the baseline flow simulations driven by 1.5 km RCM data, and the use of only a single short future climate projection. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • A. Kay & A. Rudd & H. Davies & E. Kendon & R. Jones, 2015. "Use of very high resolution climate model data for hydrological modelling: baseline performance and future flood changes," Climatic Change, Springer, vol. 133(2), pages 193-208, November.
  • Handle: RePEc:spr:climat:v:133:y:2015:i:2:p:193-208
    DOI: 10.1007/s10584-015-1455-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1455-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1455-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. M. Fischer & R. Knutti, 2013. "Robust projections of combined humidity and temperature extremes," Nature Climate Change, Nature, vol. 3(2), pages 126-130, February.
    2. Elizabeth J. Kendon & Nigel M. Roberts & Hayley J. Fowler & Malcolm J. Roberts & Steven C. Chan & Catherine A. Senior, 2014. "Heavier summer downpours with climate change revealed by weather forecast resolution model," Nature Climate Change, Nature, vol. 4(7), pages 570-576, July.
    3. Unknown, 1996. "Newsletter Fall 1996," Institute on Global Conflict and Cooperation, Working Paper Series qt9dp322p4, Institute on Global Conflict and Cooperation, University of California.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    2. Shaochun Huang & Rohini Kumar & Martina Flörke & Tao Yang & Yeshewatesfa Hundecha & Philipp Kraft & Chao Gao & Alexander Gelfan & Stefan Liersch & Anastasia Lobanova & Michael Strauch & Floris Ogtrop , 2017. "Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide," Climatic Change, Springer, vol. 141(3), pages 381-397, April.
    3. Kai Duan & Ge Sun & Yang Zhang & Khairunnisa Yahya & Kai Wang & James M. Madden & Peter V. Caldwell & Erika C. Cohen & Steven G. McNulty, 2017. "Impact of air pollution induced climate change on water availability and ecosystem productivity in the conterminous United States," Climatic Change, Springer, vol. 140(2), pages 259-272, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mallamace, Domenico & Corsaro, Carmelo & Salvo, Andrea & Cicero, Nicola & Macaluso, Andrea & Giangrosso, Giuseppe & Ferrantelli, Vincenzo & Dugo, Giacomo, 2014. "A multivariate statistical analysis coming from the NMR metabolic profile of cherry tomatoes (The Sicilian Pachino case)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 112-117.
    2. R. K. Mall & Nidhi Singh & K. K. Singh & Geetika Sonkar & Akhilesh Gupta, 2018. "Evaluating the performance of RegCM4.0 climate model for climate change impact assessment on wheat and rice crop in diverse agro-climatic zones of Uttar Pradesh, India," Climatic Change, Springer, vol. 149(3), pages 503-515, August.
    3. Alison Kay, 2022. "Differences in hydrological impacts using regional climate model and nested convection-permitting model data," Climatic Change, Springer, vol. 173(1), pages 1-19, July.
    4. Conrad Wasko & Rory Nathan, 2019. "The local dependency of precipitation on historical changes in temperature," Climatic Change, Springer, vol. 156(1), pages 105-120, September.
    5. Andrew Russell & Paul Sayers, 2022. "Assessing Future Flood Risk and Developing Integrated Flood Risk Management Strategies: A Case Study from the UK Climate Change Risk Assessment," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    6. Alex Coad & Julian Frankish & Paul Nightingale & Richard Roberts, 2014. "Business experience and start-up size: Buying more lottery tickets next time around?," Small Business Economics, Springer, vol. 43(3), pages 529-547, October.
    7. Charles D. Kolstad & Frances C. Moore, 2019. "Estimating the Economic Impacts of Climate Change Using Weather Observations," NBER Working Papers 25537, National Bureau of Economic Research, Inc.
    8. M. Mokrech & A. Kebede & R. Nicholls & F. Wimmer & L. Feyen, 2015. "An integrated approach for assessing flood impacts due to future climate and socio-economic conditions and the scope of adaptation in Europe," Climatic Change, Springer, vol. 128(3), pages 245-260, February.
    9. Trisha L. Moore & John S. Gulliver & Latham Stack & Michael H. Simpson, 2016. "Stormwater management and climate change: vulnerability and capacity for adaptation in urban and suburban contexts," Climatic Change, Springer, vol. 138(3), pages 491-504, October.
    10. L. J. Bracken & E. A. Oughton & A. Donaldson & B. Cook & J. Forrester & C. Spray & S. Cinderby & D. Passmore & N. Bissett, 2016. "Flood risk management, an approach to managing cross-border hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 217-240, June.
    11. Thomas R. Knutson & Jeffrey J. Ploshay, 2016. "Detection of anthropogenic influence on a summertime heat stress index," Climatic Change, Springer, vol. 138(1), pages 25-39, September.
    12. Xi Chen & Ning Li & Jiawei Liu & Zhengtao Zhang & Yuan Liu, 2019. "Global Heat Wave Hazard Considering Humidity Effects during the 21st Century," IJERPH, MDPI, vol. 16(9), pages 1-11, April.
    13. Aydin, Necati, 2013. "Redefining Islamic Economics as a New Economic Paradigm," Islamic Economic Studies, The Islamic Research and Training Institute (IRTI), vol. 21, pages 1-34.
    14. Christoph Schär & Nikolina Ban & Erich M. Fischer & Jan Rajczak & Jürg Schmidli & Christoph Frei & Filippo Giorgi & Thomas R. Karl & Elizabeth J. Kendon & Albert M. G. Klein Tank & Paul A. O’Gorman & , 2016. "Percentile indices for assessing changes in heavy precipitation events," Climatic Change, Springer, vol. 137(1), pages 201-216, July.
    15. Yuqing Zhang & Changchun Chen & Yun Niu & Liucheng Shen & Wenyuan Wang, 2023. "The severity of heat and cold waves amplified by high relative humidity in humid subtropical basins: a case study in the Gan River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 865-898, January.
    16. Kairui Feng & Min Ouyang & Ning Lin, 2022. "Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Audrey Brouillet & Sylvie Joussaume, 2020. "More perceived but not faster evolution of heat stress than temperature extremes in the future," Climatic Change, Springer, vol. 162(2), pages 527-544, September.
    18. Geert Jan Oldenborgh & Karin Wiel & Sarah Kew & Sjoukje Philip & Friederike Otto & Robert Vautard & Andrew King & Fraser Lott & Julie Arrighi & Roop Singh & Maarten Aalst, 2021. "Pathways and pitfalls in extreme event attribution," Climatic Change, Springer, vol. 166(1), pages 1-27, May.
    19. Poppick, Andrew & McKinnon, Karen A., 2020. "Observation-based Simulations of Humidity and Temperature Using Quantile Regression," Earth Arxiv bmskp, Center for Open Science.
    20. Ihtisham A. Malik & Robert W. Faff & Kam F. Chan, 2020. "Market response of US equities to domestic natural disasters: industry‐based evidence," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3875-3904, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:133:y:2015:i:2:p:193-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.