IDEAS home Printed from https://ideas.repec.org/a/spr/circec/v2y2022i4d10.1007_s43615-022-00154-0.html
   My bibliography  Save this article

Cost Modelling to Support Optimum Selection of Life Extension Strategy for Industrial Equipment in Smart Manufacturing

Author

Listed:
  • Nasser Amaitik

    (Aston University)

  • Ming Zhang

    (Aston University)

  • Zezhong Wang

    (Aston University)

  • Yuchun Xu

    (Aston University)

  • Gareth Thomson

    (Aston University)

  • Yiyong Xiao

    (Beihang University)

  • Nikolaos Kolokas

    (Centre for Research and Technology Hellas)

  • Alexander Maisuradze

    (Harms & Wende GmbH & Co. KG)

  • Oscar Garcia

    (Information Catalyst of Enterprises)

  • Michael Peschl

    (Harms & Wende GmbH & Co. KG)

  • Dimitrios Tzovaras

    (Centre for Research and Technology Hellas)

Abstract

Industrial equipment/machinery is an important element of manufacturing. They are used for producing objects that people need for everyday use. Therefore, there is a challenge to adopt effective maintenance strategies to keep them well-functioning and well-maintained in production lines. This will save energy and materials and contribute genuinely to the circular economy and creating value. Remanufacturing or refurbishment is one of the strategies to extend life of such industrial equipment. The paper presents an initial framework of cost estimation model based on combination of activity-based costing (ABC) and human expertise to assist the decision-making on best life extension strategy (e.g. remanufacturing, refurbishment, repair) for industrial equipment. Firstly, ABC cost model is developed to calculate cost of life extension strategy to be used as a benchmark strategy. Next, expert opinions are employed to modify data of benchmark strategy, which is then used to estimate costs of other life extension strategies. The developed cost model has been implemented in VBA-based Excel® platform. A case study with application examples has been used to demonstrate the results of the initial cost model developed and its applicability in estimating and analysing cost of applying life extension strategy for industrial equipment. Finally, conclusions on the developed cost model have been reported.

Suggested Citation

  • Nasser Amaitik & Ming Zhang & Zezhong Wang & Yuchun Xu & Gareth Thomson & Yiyong Xiao & Nikolaos Kolokas & Alexander Maisuradze & Oscar Garcia & Michael Peschl & Dimitrios Tzovaras, 2022. "Cost Modelling to Support Optimum Selection of Life Extension Strategy for Industrial Equipment in Smart Manufacturing," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1425-1444, December.
  • Handle: RePEc:spr:circec:v:2:y:2022:i:4:d:10.1007_s43615-022-00154-0
    DOI: 10.1007/s43615-022-00154-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-022-00154-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-022-00154-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirsten van Dam & Luca Simeone & Duygu Keskin & Brian Baldassarre & Monia Niero & Nicola Morelli, 2020. "Circular Economy in Industrial Design Research: A Review," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    2. Langmaak, Stephan & Wiseall, Stephen & Bru, Christophe & Adkins, Russell & Scanlan, James & Sóbester, András, 2013. "An activity-based-parametric hybrid cost model to estimate the unit cost of a novel gas turbine component," International Journal of Production Economics, Elsevier, vol. 142(1), pages 74-88.
    3. Wang, Yacan & Zhu, Quan & Krikke, Harold & Hazen, Benjamin, 2020. "How product and process knowledge enable consumer switching to remanufactured laptop computers in circular economy," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    4. Qian, Li & Ben-Arieh, David, 2008. "Parametric cost estimation based on activity-based costing: A case study for design and development of rotational parts," International Journal of Production Economics, Elsevier, vol. 113(2), pages 805-818, June.
    5. Alessandro Fontana & Andrea Barni & Deborah Leone & Maurizio Spirito & Agata Tringale & Matteo Ferraris & Joao Reis & Gil Goncalves, 2021. "Circular Economy Strategies for Equipment Lifetime Extension: A Systematic Review," Sustainability, MDPI, vol. 13(3), pages 1-28, January.
    6. Cavalieri, Sergio & Maccarrone, Paolo & Pinto, Roberto, 2004. "Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry," International Journal of Production Economics, Elsevier, vol. 91(2), pages 165-177, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    2. Zębala, Wojciech & Plaza, Malgorzata, 2014. "Comparative study of 3- and 5-axis CNC centers for free-form machining of difficult-to-cut material," International Journal of Production Economics, Elsevier, vol. 158(C), pages 345-358.
    3. Johnson, Michael D. & Kirchain, Randolph E., 2009. "Quantifying the effects of product family decisions on material selection: A process-based costing approach," International Journal of Production Economics, Elsevier, vol. 120(2), pages 653-668, August.
    4. Antonio Armillotta, 2021. "On the role of complexity in machining time estimation," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2281-2299, December.
    5. Duffner, F. & Wentker, M. & Greenwood, M. & Leker, J., 2020. "Battery cost modeling: A review and directions for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    6. Davide Bruno & Marinella Ferrara & Felice D’Alessandro & Alberto Mandelli, 2022. "The Role of Design in the CE Transition of the Furniture Industry—The Case of the Italian Company Cassina," Sustainability, MDPI, vol. 14(15), pages 1-20, July.
    7. Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
    8. Ahmad, Farhan & Bask, Anu & Laari, Sini & Robinson, Craig V., 2023. "Business management perspectives on the circular economy: Present state and future directions," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    9. Anbesh Jamwal & Sushma Kumari & Rajeev Agrawal & Monica Sharma & Ismail Gölgeci, 2024. "Unlocking Circular Economy Through Digital Transformation: the Role of Enabling Factors in SMEs," International Journal of Global Business and Competitiveness, Springer, vol. 19(1), pages 24-36, June.
    10. Kannan Govindan, 2022. "Tunneling the barriers of blockchain technology in remanufacturing for achieving sustainable development goals: A circular manufacturing perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3769-3785, December.
    11. Qian, Li & Ben-Arieh, David, 2008. "Parametric cost estimation based on activity-based costing: A case study for design and development of rotational parts," International Journal of Production Economics, Elsevier, vol. 113(2), pages 805-818, June.
    12. Peng-Yeng Yin & Hsin-Min Chen & Yi-Lung Cheng & Ying-Chieh Wei & Ya-Lin Huang & Rong-Fuh Day, 2021. "Minimizing the Makespan in Flowshop Scheduling for Sustainable Rubber Circular Manufacturing," Sustainability, MDPI, vol. 13(5), pages 1-18, February.
    13. Roope Husgafvel & Daishi Sakaguchi, 2021. "Circular Economy Development in the Construction Sector in Japan," World, MDPI, vol. 3(1), pages 1-26, December.
    14. Arijit Bhattacharya & Shefali Srivastava & Abhijit Majumdar, 2024. "Circular supply chains in manufacturing—Quo vadis? Accomplishments, challenges and future opportunities," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4397-4423, July.
    15. Julia Romano Sanches & Adriana Hofmann Trevisan & Bruno Michel Roman Pais Seles & Camila Gonçalves Castro & Roberta Souza Piao & Henrique Rozenfeld & Janaina Mascarenhas, 2022. "Sustainable Circular Economy Strategies: An Analysis of Brazilian Corporate Sustainability Reporting," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    16. Ibrahim, Awad Elsayed Awad & Elamer, Ahmed A. & Ezat, Amr Nazieh, 2021. "The convergence of big data and accounting: innovative research opportunities," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    17. Chou, Jui-Sheng & Tai, Yian & Chang, Lian-Ji, 2010. "Predicting the development cost of TFT-LCD manufacturing equipment with artificial intelligence models," International Journal of Production Economics, Elsevier, vol. 128(1), pages 339-350, November.
    18. Caputo, Antonio C. & Pelagagge, Pacifico M., 2008. "Parametric and neural methods for cost estimation of process vessels," International Journal of Production Economics, Elsevier, vol. 112(2), pages 934-954, April.
    19. Alvino, Letizia & Dangelico, Rosa Maria, 2022. "Investigating the antecedents of consumer behavioral intention for sustainable fashion products: Evidence from a large survey of Italian consumers," Other publications TiSEM ed6b6a75-2a9f-4b6e-8076-9, Tilburg University, School of Economics and Management.
    20. Wen-Hsien Tsai, 2018. "Carbon Taxes and Carbon Right Costs Analysis for the Tire Industry," Energies, MDPI, vol. 11(8), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:2:y:2022:i:4:d:10.1007_s43615-022-00154-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.