IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v25y2017i3d10.1007_s10100-016-0463-6.html
   My bibliography  Save this article

Two-echelon location routing synchronized with production schedules and time windows

Author

Listed:
  • Karlo Bala

    (University of Novi Sad)

  • Dejan Brcanov

    (University of Novi Sad)

  • Nebojša Gvozdenović

    (University of Novi Sad)

Abstract

In this paper we study a problem that arose while planning the delivery of perishable goods, such as newspapers or foodstuff, in urban areas. The customers require the delivery of several different products within specified time windows. Given a production schedule, facilities for cross docking and a vehicle fleet, the problem is to create a cost effective delivery plan. We propose a heuristic that maintains product availability, and simultaneously, generates an efficient routing schedule. Product availability is maintained through a preflow-push algorithm performed on a time-space facility network, while the routing is guided by simulated annealing. The heuristic was tested on a set of specifically created test instances and on standard 2E-LRP instances by Prodhon.

Suggested Citation

  • Karlo Bala & Dejan Brcanov & Nebojša Gvozdenović, 2017. "Two-echelon location routing synchronized with production schedules and time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 525-543, September.
  • Handle: RePEc:spr:cejnor:v:25:y:2017:i:3:d:10.1007_s10100-016-0463-6
    DOI: 10.1007/s10100-016-0463-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-016-0463-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-016-0463-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madsen, Oli B. G., 1983. "Methods for solving combined two level location-routing problems of realistic dimensions," European Journal of Operational Research, Elsevier, vol. 12(3), pages 295-301, March.
    2. Ingmar Steinzen & Vitali Gintner & Leena Suhl & Natalia Kliewer, 2010. "A Time-Space Network Approach for the Integrated Vehicle- and Crew-Scheduling Problem with Multiple Depots," Transportation Science, INFORMS, vol. 44(3), pages 367-382, August.
    3. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    4. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    5. Jesus Gonzalez-Feliu & Guido Perboli & Roberto Tadei & Daniele Vigo, 2008. "The two-echelon capacitated vehicle routing problem," Working Papers halshs-00879447, HAL.
    6. Van Buer, Michael G. & Woodruff, David L. & Olson, Rick T., 1999. "Solving the medium newspaper production/distribution problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 237-253, June.
    7. Jacobsen, S. K. & Madsen, O. B. G., 1980. "A comparative study of heuristics for a two-level routing-location problem," European Journal of Operational Research, Elsevier, vol. 5(6), pages 378-387, December.
    8. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    9. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    2. Andrej Kastrin & Janez Povh & Lidija Zadnik Stirn & Janez Žerovnik, 2021. "Methodologies and applications for resilient global development from the aspect of SDI-SOR special issues of CJOR," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 773-790, September.
    3. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2020. "Two-echelon urban deliveries using autonomous vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    4. Shabnam Rekabi & Ali Ghodratnama & Amir Azaron, 2022. "Designing pharmaceutical supply chain networks with perishable items considering congestion," Operational Research, Springer, vol. 22(4), pages 4159-4219, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janjevic, Milena & Winkenbach, Matthias & Merchán, Daniel, 2019. "Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 37-67.
    2. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    3. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    4. Zhou, Lin & Baldacci, Roberto & Vigo, Daniele & Wang, Xu, 2018. "A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution," European Journal of Operational Research, Elsevier, vol. 265(2), pages 765-778.
    5. Yue Lu & Maoxiang Lang & Xueqiao Yu & Shiqi Li, 2019. "A Sustainable Multimodal Transport System: The Two-Echelon Location-Routing Problem with Consolidation in the Euro–China Expressway," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    6. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    7. Younes Rahmani & Wahiba Ramdane Cherif-Khettaf & Ammar Oulamara, 2016. "The two-echelon multi-products location-routing problem with pickup and delivery: formulation and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 999-1019, February.
    8. Ben Mohamed, Imen & Klibi, Walid & Sadykov, Ruslan & Şen, Halil & Vanderbeck, François, 2023. "The two-echelon stochastic multi-period capacitated location-routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 645-667.
    9. Yanwei Zhao & Longlong Leng & Chunmiao Zhang, 2021. "A novel framework of hyper-heuristic approach and its application in location-routing problem with simultaneous pickup and delivery," Operational Research, Springer, vol. 21(2), pages 1299-1332, June.
    10. Snoeck, André & Winkenbach, Matthias, 2020. "The value of physical distribution flexibility in serving dense and uncertain urban markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 151-177.
    11. Matthias Winkenbach & Paul R. Kleindorfer & Stefan Spinler, 2016. "Enabling Urban Logistics Services at La Poste through Multi-Echelon Location-Routing," Transportation Science, INFORMS, vol. 50(2), pages 520-540, May.
    12. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    13. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    14. M. Tadaros & A. Migdalas, 2022. "Bi- and multi-objective location routing problems: classification and literature review," Operational Research, Springer, vol. 22(5), pages 4641-4683, November.
    15. Lin Zhou & Xu Wang & Lin Ni & Yun Lin, 2016. "Location-Routing Problem with Simultaneous Home Delivery and Customer’s Pickup for City Distribution of Online Shopping Purchases," Sustainability, MDPI, vol. 8(8), pages 1-20, August.
    16. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    17. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    18. Jaller, Miguel & Pahwa, Anmol, 2023. "Coping with the Rise of E-commerce Generated Home Deliveries through Innovative Last-mile Technologies and Strategies," Institute of Transportation Studies, Working Paper Series qt5t76x0kh, Institute of Transportation Studies, UC Davis.
    19. Janjevic, Milena & Merchán, Daniel & Winkenbach, Matthias, 2021. "Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1059-1077.
    20. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:25:y:2017:i:3:d:10.1007_s10100-016-0463-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.