IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v19y2011i4p467-493.html
   My bibliography  Save this article

A tabu search tutorial based on a real-world scheduling problem

Author

Listed:
  • Ulrike Schneider

Abstract

We apply a tabu search method to a scheduling problem of a company producing cables for cars: the task is to determine on what machines and in which order the cable jobs should be produced in order to save production costs. First, the problem is modeled as a combinatorial optimization problem. We then employ a tabu search algorithm as an approach to solve the specific problem of the company, adapt various intensification as well as diversification strategies within the algorithm, and demonstrate how these different implementations improve the results. Moreover, we show how the computational cost in each iteration of the algorithm can be reduced drastically from O(n 3 ) (naive implementation) to O(n) (smart implementation) by exploiting the specific structure of the problem (n refers to the number of cable orders). Copyright The Author(s) 2011

Suggested Citation

  • Ulrike Schneider, 2011. "A tabu search tutorial based on a real-world scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 467-493, December.
  • Handle: RePEc:spr:cejnor:v:19:y:2011:i:4:p:467-493
    DOI: 10.1007/s10100-010-0137-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-010-0137-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-010-0137-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    2. Tan, Kay Chen & Burke, Edmund & Lee, Tong Heng, 2007. "Evolutionary and meta-heuristic scheduling," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1852-1854, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandra M. Newman & Martin Weiss, 2013. "A Survey of Linear and Mixed-Integer Optimization Tutorials," INFORMS Transactions on Education, INFORMS, vol. 14(1), pages 26-38, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    2. Jiae Zhang & Jianjun Yang, 2016. "Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: an industrial application," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4894-4918, August.
    3. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    4. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    5. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    6. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    7. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    8. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    9. Chen, Haoxun & Luh, Peter B., 2003. "An alternative framework to Lagrangian relaxation approach for job shop scheduling," European Journal of Operational Research, Elsevier, vol. 149(3), pages 499-512, September.
    10. An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    11. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
    12. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    13. J. Christopher Beck & T. K. Feng & Jean-Paul Watson, 2011. "Combining Constraint Programming and Local Search for Job-Shop Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 1-14, February.
    14. Zhou, Hong & Cheung, Waiman & Leung, Lawrence C., 2009. "Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm," European Journal of Operational Research, Elsevier, vol. 194(3), pages 637-649, May.
    15. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    16. Julien Autuori & Faicel Hnaien & Farouk Yalaoui, 2016. "A mapping technique for better solution exploration: NSGA-II adaptation," Journal of Heuristics, Springer, vol. 22(1), pages 89-123, February.
    17. Tamssaouet, Karim & Dauzère-Pérès, Stéphane, 2023. "A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 311(2), pages 455-471.
    18. Gregory A. Kasapidis & Dimitris C. Paraskevopoulos & Panagiotis P. Repoussis & Christos D. Tarantilis, 2021. "Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4044-4068, November.
    19. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
    20. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:19:y:2011:i:4:p:467-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.