IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v15y2017i3d10.1007_s10288-016-0337-8.html
   My bibliography  Save this article

Partially observed optimal stopping problem for discrete-time Markov processes

Author

Listed:
  • Benoîte Saporta

    (IMAG)

  • François Dufour

    (INRIA)

  • Christophe Nivot

    (INRIA)

Abstract

This paper is dedicated to the investigation of a new numerical method to approximate the optimal stopping problem for a discrete-time continuous state space Markov chain under partial observations. It is based on a two-step discretization procedure based on optimal quantization. First, we discretize the state space of the unobserved variable by quantizing an underlying reference measure. Then we jointly discretize the resulting approximate filter and the observation process. We obtain a fully computable approximation of the value function with explicit error bounds for its convergence towards the true value function.

Suggested Citation

  • Benoîte Saporta & François Dufour & Christophe Nivot, 2017. "Partially observed optimal stopping problem for discrete-time Markov processes," 4OR, Springer, vol. 15(3), pages 277-302, September.
  • Handle: RePEc:spr:aqjoor:v:15:y:2017:i:3:d:10.1007_s10288-016-0337-8
    DOI: 10.1007/s10288-016-0337-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-016-0337-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-016-0337-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Chen & Xianping Guo & Zhong-Wei Liao, 2022. "Optimal Stopping Time on Semi-Markov Processes with Finite Horizon," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 408-439, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    2. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    3. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    4. Rutger-Jan Lange & Coen Teulings, 2018. "The option value of vacant land and the optimal timing of city extensions," Tinbergen Institute Discussion Papers 18-033/III, Tinbergen Institute.
    5. Tao Chen & Mike Ludkovski & Moritz Vo{ss}, 2022. "On Parametric Optimal Execution and Machine Learning Surrogates," Papers 2204.08581, arXiv.org, revised Oct 2023.
    6. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    7. Vincent Lemaire & Thibaut Montes & Gilles Pagès, 2019. "New Weak Error bounds and expansions for Optimal Quantization," Working Papers hal-02361644, HAL.
    8. Polynice Oyono Ngou & Cody Hyndman, 2014. "A Fourier interpolation method for numerical solution of FBSDEs: Global convergence, stability, and higher order discretizations," Papers 1410.8595, arXiv.org, revised May 2022.
    9. Teulings, Coen & Lange, Rutger-Jan, 2021. "The option value of vacant land: Don't build when demand for housing is booming," CEPR Discussion Papers 16023, C.E.P.R. Discussion Papers.
    10. Qiang Han & Shaolin Ji, 2022. "A Multi-Step Algorithm for BSDEs Based On a Predictor-Corrector Scheme and Least-Squares Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2403-2426, December.
    11. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & J'er^ome Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Papers 2201.02587, arXiv.org, revised Jun 2023.
    12. Isabelle Charlier & Davy Paindaveine, 2014. "Conditional Quantile Estimation through Optimal Quantization," Working Papers ECARES ECARES 2014-28, ULB -- Universite Libre de Bruxelles.
    13. Filipović, Damir & Larsson, Martin & Pulido, Sergio, 2020. "Markov cubature rules for polynomial processes," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1947-1971.
    14. D. Belomestny & M. Kaledin & J. Schoenmakers, 2019. "Semi-tractability of optimal stopping problems via a weighted stochastic mesh algorithm," Papers 1906.09431, arXiv.org.
    15. Corlay Sylvain & Pagès Gilles, 2015. "Functional quantization-based stratified sampling methods," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 1-32, March.
    16. Brandejsky, Adrien & de Saporta, Benoîte & Dufour, François, 2013. "Optimal stopping for partially observed piecewise-deterministic Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3201-3238.
    17. Bruno Bouchard & Jean-François Chassagneux & Géraldine Bouveret, 2016. "A backward dual representation for the quantile hedging of Bermudan options," Post-Print hal-01069270, HAL.
    18. Arnaud Porchet & Nizar Touzi & Xavier Warin, 2009. "Valuation of power plants by utility indifference and numerical computation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 47-75, August.
    19. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    20. Zineb El Filali Ech-Chafiq & Pierre Henry Labordère & Jérôme Lelong, 2023. "Pricing Bermudan options using regression trees/random forests," Post-Print hal-03436046, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:15:y:2017:i:3:d:10.1007_s10288-016-0337-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.