IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v15y2017i1d10.1007_s10288-016-0323-1.html
   My bibliography  Save this article

A class of adaptive Dai–Liao conjugate gradient methods based on the scaled memoryless BFGS update

Author

Listed:
  • Saman Babaie-Kafaki

    (Semnan University)

  • Reza Ghanbari

    (Ferdowsi University of Mashhad)

Abstract

Minimizing the distance between search direction matrix of the Dai–Liao method and the scaled memoryless BFGS update in the Frobenius norm, and using Powell’s nonnegative restriction of the conjugate gradient parameters, a one-parameter class of nonlinear conjugate gradient methods is proposed. Then, a brief global convergence analysis is made with and without convexity assumption on the objective function. Preliminary numerical results are reported; they demonstrate a proper choice for the parameter of the proposed class of conjugate gradient methods may lead to promising numerical performance.

Suggested Citation

  • Saman Babaie-Kafaki & Reza Ghanbari, 2017. "A class of adaptive Dai–Liao conjugate gradient methods based on the scaled memoryless BFGS update," 4OR, Springer, vol. 15(1), pages 85-92, March.
  • Handle: RePEc:spr:aqjoor:v:15:y:2017:i:1:d:10.1007_s10288-016-0323-1
    DOI: 10.1007/s10288-016-0323-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-016-0323-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-016-0323-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shmuel S. Oren, 1974. "Self-Scaling Variable Metric (SSVM) Algorithms," Management Science, INFORMS, vol. 20(5), pages 863-874, January.
    2. Wenyu Sun & Ya-Xiang Yuan, 2006. "Optimization Theory and Methods," Springer Optimization and Its Applications, Springer, number 978-0-387-24976-6, June.
    3. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    4. Shmuel S. Oren & David G. Luenberger, 1974. "Self-Scaling Variable Metric (SSVM) Algorithms," Management Science, INFORMS, vol. 20(5), pages 845-862, January.
    5. Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parvaneh Faramarzi & Keyvan Amini, 2021. "A spectral three-term Hestenes–Stiefel conjugate gradient method," 4OR, Springer, vol. 19(1), pages 71-92, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saman Babaie-Kafaki, 2015. "On Optimality of the Parameters of Self-Scaling Memoryless Quasi-Newton Updating Formulae," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 91-101, October.
    2. Fahimeh Biglari & Farideh Mahmoodpur, 2016. "Scaling Damped Limited-Memory Updates for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 177-188, July.
    3. Martin Buhmann & Dirk Siegel, 2021. "Implementing and modifying Broyden class updates for large scale optimization," Computational Optimization and Applications, Springer, vol. 78(1), pages 181-203, January.
    4. XiaoLiang Dong & Deren Han & Zhifeng Dai & Lixiang Li & Jianguang Zhu, 2018. "An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 944-961, December.
    5. C. X. Kou & Y. H. Dai, 2015. "A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 209-224, April.
    6. S. Cipolla & C. Di Fiore & P. Zellini, 2020. "A variation of Broyden class methods using Householder adaptive transforms," Computational Optimization and Applications, Springer, vol. 77(2), pages 433-463, November.
    7. Saman Babaie-Kafaki, 2012. "A note on the global convergence theorem of the scaled conjugate gradient algorithms proposed by Andrei," Computational Optimization and Applications, Springer, vol. 52(2), pages 409-414, June.
    8. Nataj, Sarah & Lui, S.H., 2020. "Superlinear convergence of nonlinear conjugate gradient method and scaled memoryless BFGS method based on assumptions about the initial point," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    9. Zohre Aminifard & Saman Babaie-Kafaki, 2019. "An optimal parameter choice for the Dai–Liao family of conjugate gradient methods by avoiding a direction of the maximum magnification by the search direction matrix," 4OR, Springer, vol. 17(3), pages 317-330, September.
    10. M. Al-Baali, 1998. "Numerical Experience with a Class of Self-Scaling Quasi-Newton Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 533-553, March.
    11. XiaoLiang Dong & Hongwei Liu & Yubo He, 2015. "A Self-Adjusting Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 225-241, April.
    12. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    13. Saha, Tanay & Rakshit, Suman & Khare, Swanand R., 2023. "Linearly structured quadratic model updating using partial incomplete eigendata," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    14. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    15. Hai-Jun Wang & Qin Ni, 2010. "A Convex Approximation Method For Large Scale Linear Inequality Constrained Minimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 85-101.
    16. Chen, Liang, 2016. "A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 79-93.
    17. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    18. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    19. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    20. Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:15:y:2017:i:1:d:10.1007_s10288-016-0323-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.