IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v27y2010i01ns0217595910002557.html
   My bibliography  Save this article

A Convex Approximation Method For Large Scale Linear Inequality Constrained Minimization

Author

Listed:
  • HAI-JUN WANG

    (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    Science of College, China University of Mining and Technology, Xuzhou 221008, China)

  • QIN NI

    (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

A new method of moving asymptotes for large scale minimization subject to linear inequality constraints is discussed in this paper. In each step of the iterative process, a descend direction is obtained by solving a convex separable subproblem with dual technique. The new rules for controlling the asymptotes parameters are designed by the trust region radius and some approximation properties such that the global convergence of the new method are obtained. The numerical results show that the new method may be capable of processing some large scale problems.

Suggested Citation

  • Hai-Jun Wang & Qin Ni, 2010. "A Convex Approximation Method For Large Scale Linear Inequality Constrained Minimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 85-101.
  • Handle: RePEc:wsi:apjorx:v:27:y:2010:i:01:n:s0217595910002557
    DOI: 10.1142/S0217595910002557
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595910002557
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595910002557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenyu Sun & Ya-Xiang Yuan, 2006. "Optimization Theory and Methods," Springer Optimization and Its Applications, Springer, number 978-0-387-24976-6, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    2. Saha, Tanay & Rakshit, Suman & Khare, Swanand R., 2023. "Linearly structured quadratic model updating using partial incomplete eigendata," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    4. Chen, Liang, 2016. "A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 79-93.
    5. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    6. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    7. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    8. Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
    9. Li, Jinqing & Ma, Jun, 2019. "Maximum penalized likelihood estimation of additive hazards models with partly interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 170-180.
    10. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    11. Abolfazl Gharaei & Alireza Amjadian & Ali Shavandi & Amir Amjadian, 2023. "An augmented Lagrangian approach with general constraints to solve nonlinear models of the large-scale reliable inventory systems," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-37, March.
    12. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    13. F. Aragón Artacho & A. Belyakov & A. Dontchev & M. López, 2014. "Local convergence of quasi-Newton methods under metric regularity," Computational Optimization and Applications, Springer, vol. 58(1), pages 225-247, May.
    14. Hamid Esmaeili & Morteza Kimiaei, 2016. "A trust-region method with improved adaptive radius for systems of nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 109-125, February.
    15. Lijuan Zhao & Wenyu Sun, 2013. "A Conic Affine Scaling Dogleg Method For Nonlinear Optimization With Bound Constraints," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 30(03), pages 1-30.
    16. Luis Miguel Pérez Archila & Juan David Bastidas-Rodríguez & Rodrigo Correa & Luz Adriana Trejos Grisales & Daniel Gonzalez-Montoya, 2020. "A Solution of Implicit Model of Series-Parallel Photovoltaic Arrays by Using Deterministic and Metaheuristic Global Optimization Algorithms," Energies, MDPI, vol. 13(4), pages 1-22, February.
    17. Amin Fahs & Hassane Fahs & R. Dehghani, 2022. "Optimal Scaling Parameters for Spectral Conjugate Gradient Methods," SN Operations Research Forum, Springer, vol. 3(2), pages 1-13, June.
    18. Liu, Jun & Fu, Hongfei & Zhang, Jiansong, 2020. "A QSC method for fractional subdiffusion equations with fractional boundary conditions and its application in parameters identification," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 153-174.
    19. Saman Babaie-Kafaki & Reza Ghanbari, 2016. "Descent Symmetrization of the Dai–Liao Conjugate Gradient Method," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(02), pages 1-10, April.
    20. Na Huang, 2022. "On R-linear convergence analysis for a class of gradient methods," Computational Optimization and Applications, Springer, vol. 81(1), pages 161-177, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:27:y:2010:i:01:n:s0217595910002557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.