IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v12y2025i1d10.1007_s40745-024-00570-z.html
   My bibliography  Save this article

Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis

Author

Listed:
  • Shengkun Xie

    (Toronto Metropolitan University)

  • Chong Gan

    (University of Guelph)

  • Anna T. Lawniczak

    (University of Guelph)

Abstract

Developing effective methodologies for territory design and relativity estimation is crucial in auto insurance rate filings and reviews. This study introduces a novel approach utilizing fuzzy clustering to enhance the design process of territories for auto insurance rate-making and regulation. By adopting a soft clustering method, we aim to overcome the limitations of traditional hard clustering techniques and improve the assessment of territory risk. Furthermore, we employ non-negative sparse matrix approximation techniques to refine the estimates of risk relativities for basic rating units. This method promotes sparsity in the fuzzy membership matrix by eliminating small membership values, leading to more robust and interpretable results. We also compare the outcomes with those obtained using non-negative sparse principal component analysis, a technique explored in our previous research. Integrating fuzzy clustering with non-negative sparse matrix decomposition offers a promising approach for auto insurance rate filings. The combined methodology enhances decision-making and provides sparse estimates, which can be advantageous in various data science applications where fuzzy clustering is relevant.

Suggested Citation

  • Shengkun Xie & Chong Gan & Anna T. Lawniczak, 2025. "Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis," Annals of Data Science, Springer, vol. 12(1), pages 307-340, February.
  • Handle: RePEc:spr:aodasc:v:12:y:2025:i:1:d:10.1007_s40745-024-00570-z
    DOI: 10.1007/s40745-024-00570-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-024-00570-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-024-00570-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Boris Kauhl & Jörg König & Sandra Wolf, 2023. "Spatial Distribution of COVID-19 Hospitalizations and Associated Risk Factors in Health Insurance Data Using Bayesian Spatial Modelling," IJERPH, MDPI, vol. 20(5), pages 1-10, February.
    2. Viaene, Stijn & Ayuso, Mercedes & Guillen, Montserrat & Van Gheel, Dirk & Dedene, Guido, 2007. "Strategies for detecting fraudulent claims in the automobile insurance industry," European Journal of Operational Research, Elsevier, vol. 176(1), pages 565-583, January.
    3. Devriendt, Sander & Antonio, Katrien & Reynkens, Tom & Verbelen, Roel, 2021. "Sparse regression with Multi-type Regularized Feature modeling," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 248-261.
    4. Grubesic, Tony H., 2008. "Zip codes and spatial analysis: Problems and prospects," Socio-Economic Planning Sciences, Elsevier, vol. 42(2), pages 129-149, June.
    5. Cavanaugh, Joseph E., 1997. "Unifying the derivations for the Akaike and corrected Akaike information criteria," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 201-208, April.
    6. Ai Cheo Yeo & Kate A. Smith & Robert J. Willis & Malcolm Brooks, 2001. "Clustering technique for risk classification and prediction of claim costs in the automobile insurance industry," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(1), pages 39-50, March.
    7. Shapiro, Arnold F., 2004. "Fuzzy logic in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 399-424, October.
    8. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanku Dey & Emrah Altun & Devendra Kumar & Indranil Ghosh, 2023. "The Reflected-Shifted-Truncated Lomax Distribution: Associated Inference with Applications," Annals of Data Science, Springer, vol. 10(3), pages 805-828, June.
    2. Govinda Prasad Dhungana & Arun Kumar Chaudhary & Ramesh Prasad Tharu & Vijay Kumar, 2025. "Generalized Alpha Power Inverted Weibull Distribution: Application of Air Pollution in Kathmandu, Nepal," Annals of Data Science, Springer, vol. 12(5), pages 1691-1715, October.
    3. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    4. Mercedes Ayuso(universitat de Barcelona) & Miguel Santolino(Universitat de Barcelona), 2009. "Individual prediction of automobile bodily injury claims liabilities," Working Papers in Economics 220, Universitat de Barcelona. Espai de Recerca en Economia.
    5. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    6. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    7. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    8. Carlos A. Medel, 2015. "Probabilidad Clásica de Sobreajuste con Criterios de Información: Estimaciones con Series Macroeconómicas Chilenas," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 30(1), pages 57-72, Abril.
    9. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    10. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    11. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    12. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    13. Elham Shamsinejad & Touraj Banirostam & Mir Mohsen Pedram & Amir Masoud Rahmani, 2025. "A Review of Anonymization Algorithms and Methods in Big Data," Annals of Data Science, Springer, vol. 12(1), pages 253-279, February.
    14. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    15. Sankalp Loomba & Madhavi Dave & Harshal Arolkar & Sachin Sharma, 2024. "Sentiment Analysis using Dictionary-Based Lexicon Approach: Analysis on the Opinion of Indian Community for the Topic of Cryptocurrency," Annals of Data Science, Springer, vol. 11(6), pages 2019-2034, December.
    16. Jed Armstrong & Özer Karagedikli, 2017. "The role of non-participants in labour market dynamics," Reserve Bank of New Zealand Analytical Notes series AN2017/01, Reserve Bank of New Zealand.
    17. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    18. Mathew P. M. Ashlin & P. G. Sankaran & E. P. Sreedevi, 2025. "Semiparametric Regression Analysis of Panel Count Data with Multiple Modes of Recurrence," Annals of Data Science, Springer, vol. 12(2), pages 571-590, April.
    19. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    20. Daniel E. O'Leary, 2009. "Downloads and citations in Intelligent Systems in Accounting, Finance and Management," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 21-31, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:1:d:10.1007_s40745-024-00570-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.