IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i2d10.1007_s40745-022-00455-z.html
   My bibliography  Save this article

Data Analysis by Adaptive Progressive Hybrid Censored Under Bivariate Model

Author

Listed:
  • El-Sayed A. El-Sherpieny

    (Cairo University)

  • Hiba Z. Muhammed

    (Cairo University)

  • Ehab M. Almetwally

    (Cairo University
    Delta University of Science and Technology)

Abstract

The purpose of this paper is to introduce the adaptive progressive hybrid censored scheme of the bivariate model which expands the limited applicability of failure censored schemes for the bivariate models in several fields of products. Also, the paper discusses a new bivariate model based on an adaptive progressive hybrid censored with more efficacy than the traditional models. Based on the FGM copula function and Odd-Weibull family, we will introduce the bivariate FGM Weibull-Weibull distribution. To estimate the model parameters, maximum likelihood and Bayesian estimation are used. In addition, for the parameter model, asymptotic confidence intervals and credible intervals of the highest posterior density for the Bayesian are calculated. A Monte-Carlo simulation analysis is carried out of the maximum likelihood and Bayesian estimators. Finally, we demonstrate the utility of the suggested bivariate distribution using real data from the medical area, such as diabetic nephropathy data.

Suggested Citation

  • El-Sayed A. El-Sherpieny & Hiba Z. Muhammed & Ehab M. Almetwally, 2024. "Data Analysis by Adaptive Progressive Hybrid Censored Under Bivariate Model," Annals of Data Science, Springer, vol. 11(2), pages 507-548, April.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:2:d:10.1007_s40745-022-00455-z
    DOI: 10.1007/s40745-022-00455-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00455-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00455-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Amal S. Hassan & Marwa Abd-Allah, 2019. "On the Inverse Power Lomax Distribution," Annals of Data Science, Springer, vol. 6(2), pages 259-278, June.
    3. Wei Deng & Rajvardhan Patil & Fangyao Liu & Ergu Daji & Yong Shi, 2022. "Exploring Freight Loading Management by Deep Learning: a Case Study in Home Furnishing Industry," Annals of Data Science, Springer, vol. 9(2), pages 213-228, April.
    4. Lai, Xin & Yau, Kelvin K.W. & Liu, Liu, 2017. "Competing risk model with bivariate random effects for clustered survival data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 215-223.
    5. Ehab Mohamed Almetwally & Hiba Zeyada Muhammed & El-Sayed A. El-Sherpieny, 2020. "Bivariate Weibull Distribution: Properties and Different Methods of Estimation," Annals of Data Science, Springer, vol. 7(1), pages 163-193, March.
    6. P. G. Sankaran & N. Unnikrishnan Nair, 1993. "A bivariate pareto model and its applications to reliability," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 1013-1020, December.
    7. Hon Keung Tony Ng & Debasis Kundu & Ping Shing Chan, 2009. "Statistical analysis of exponential lifetimes under an adaptive Type‐II progressive censoring scheme," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(8), pages 687-698, December.
    8. M. El-Morshedy & Ziyad Ali Alhussain & Doaa Atta & Ehab M. Almetwally & M. S. Eliwa, 2020. "Bivariate Burr X Generator of Distributions: Properties and Estimation Methods with Applications to Complete and Type-II Censored Samples," Mathematics, MDPI, vol. 8(2), pages 1-31, February.
    9. Fatih Kızılaslan & Mustafa Nadar, 2018. "Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution," Statistical Papers, Springer, vol. 59(1), pages 307-340, March.
    10. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    11. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    2. O. E. Abo-Kasem & Ehab M. Almetwally & Wael S. Abu El Azm, 2023. "Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation," Annals of Data Science, Springer, vol. 10(5), pages 1237-1284, October.
    3. El-Sayed A. El-Sherpieny & Hiba Z. Muhammed & Ehab M. Almetwally, 2024. "Progressive Type-II Censored Samples for Bivariate Weibull Distribution with Economic and Medical Applications," Annals of Data Science, Springer, vol. 11(1), pages 51-85, February.
    4. Hanan Haj Ahmad & Ehab M. Almetwally & Dina A. Ramadan, 2023. "Investigating the Relationship between Processor and Memory Reliability in Data Science: A Bivariate Model Approach," Mathematics, MDPI, vol. 11(9), pages 1-23, May.
    5. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    6. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    7. El-Sayed A. El-Sherpieny & Ehab M. Almetwally & Hiba Z. Muhammed, 2023. "Bayesian and Non-Bayesian Estimation for the Parameter of Bivariate Generalized Rayleigh Distribution Based on Clayton Copula under Progressive Type-II Censoring with Random Removal," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1205-1242, August.
    8. Dina A. Ramadan & Ehab M. Almetwally & Ahlam H. Tolba, 2023. "Statistical Inference to the Parameter of the Akshaya Distribution under Competing Risks Data with Application HIV Infection to AIDS," Annals of Data Science, Springer, vol. 10(6), pages 1499-1525, December.
    9. Sanku Dey & Emrah Altun & Devendra Kumar & Indranil Ghosh, 2023. "The Reflected-Shifted-Truncated Lomax Distribution: Associated Inference with Applications," Annals of Data Science, Springer, vol. 10(3), pages 805-828, June.
    10. Sumangal Bhattacharya & Ishapathik Das & Muralidharan Kunnummal, 2025. "On Modeling Bivariate Lifetime Data in the Presence of Inliers," Annals of Data Science, Springer, vol. 12(1), pages 1-22, February.
    11. Hassan Okasha & Yuhlong Lio & Mohammed Albassam, 2021. "On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(22), pages 1-38, November.
    12. Hiba Z. Muhammed & Ehab M. Almetwally, 2023. "Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring," Annals of Data Science, Springer, vol. 10(2), pages 481-512, April.
    13. Mohamed Ibrahim & Khaoula Aidi & M. Masoom Ali & Haitham M. Yousof, 2023. "A Novel Test Statistic for Right Censored Validity under a new Chen extension with Applications in Reliability and Medicine," Annals of Data Science, Springer, vol. 10(5), pages 1285-1299, October.
    14. Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
    15. Daniel Puig & Oswaldo Morales-Nápoles & Fatemeh Bakhtiari & Gissela Landa, 2017. "The accountability imperative for quantifiying the uncertainty of emission forecasts : evidence from Mexico," Working Papers hal-03389325, HAL.
    16. Richard C. Bradley & Richard A. Davis & Dimitris N. Politis, 2021. "Preface to the Murray Rosenblatt memorial special issue of JTSA," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 495-498, September.
    17. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    18. Gaißer, Sandra & Schmid, Friedrich, 2010. "On testing equality of pairwise rank correlations in a multivariate random vector," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2598-2615, November.
    19. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    20. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:2:d:10.1007_s40745-022-00455-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.