IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v112y2017icp215-223.html
   My bibliography  Save this article

Competing risk model with bivariate random effects for clustered survival data

Author

Listed:
  • Lai, Xin
  • Yau, Kelvin K.W.
  • Liu, Liu

Abstract

Competing risks are often observed in clinical trial studies. As exemplified in two data sets, the bone marrow transplantation study for leukaemia patients and the primary biliary cirrhosis study, patients could experience two competing events which may be correlated due to shared unobservable factors within the same cluster. With the presence of random hospital/cluster effects, a cause-specific hazard model with bivariate random effects is proposed to analyse clustered survival data with two competing events. This model extends earlier work by allowing random effects in two hazard function parts to follow a bivariate normal distribution, which gives a generalized model with a correlation parameter governing the relationship between two events due to the hospital/cluster effects. By adopting the GLMM formulation, random effects are incorporated in the model via the linear predictor terms. Estimation of parameters is achieved via an iterative algorithm. A simulation study is conducted to assess the performance of the estimators, under the proposed numerical estimation scheme. Application to the two sets of data illustrates the usefulness of the proposed model.

Suggested Citation

  • Lai, Xin & Yau, Kelvin K.W. & Liu, Liu, 2017. "Competing risk model with bivariate random effects for clustered survival data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 215-223.
  • Handle: RePEc:eee:csdana:v:112:y:2017:i:c:p:215-223
    DOI: 10.1016/j.csda.2017.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317300555
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, Xin & Yau, Kelvin K.W., 2010. "Extending the long-term survivor mixture model with random effects for clustered survival data," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2103-2112, September.
    2. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    3. Xuelin Huang & Robert A. Wolfe, 2002. "A Frailty Model for Informative Censoring," Biometrics, The International Biometric Society, vol. 58(3), pages 510-520, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxia Zhang & Liu Liu & Jin Yue & Xin Lai, 2018. "Cardiopulmonary Function Monitoring Based on MEWMA Control Chart," Annals of Data Science, Springer, vol. 5(2), pages 293-299, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    2. Lei Liu & Xuelin Huang & John O'Quigley, 2008. "Analysis of Longitudinal Data in the Presence of Informative Observational Times and a Dependent Terminal Event, with Application to Medical Cost Data," Biometrics, The International Biometric Society, vol. 64(3), pages 950-958, September.
    3. María José Lombardía & Esther López‐Vizcaíno & Cristina Rueda, 2017. "Mixed generalized Akaike information criterion for small area models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1229-1252, October.
    4. Su, Pei-Fang & Chi, Yunchan & Li, Chung-I & Shyr, Yu & Liao, Yi-De, 2011. "Analyzing survival curves at a fixed point in time for paired and clustered right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1617-1628, April.
    5. Dongxiao Han & Xiaogang Su & Liuquan Sun & Zhou Zhang & Lei Liu, 2020. "Variable selection in joint frailty models of recurrent and terminal events," Biometrics, The International Biometric Society, vol. 76(4), pages 1330-1339, December.
    6. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    7. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    8. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    9. Xuelin Huang & Lei Liu, 2007. "A Joint Frailty Model for Survival and Gap Times Between Recurrent Events," Biometrics, The International Biometric Society, vol. 63(2), pages 389-397, June.
    10. Chan, Moon-tong & Yu, Dalei & Yau, Kelvin K.W., 2015. "Multilevel cumulative logistic regression model with random effects: Application to British social attitudes panel survey data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 173-186.
    11. Richard Tawiah & Geoffrey J. McLachlan & Shu Kay Ng, 2020. "A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction," Biometrics, The International Biometric Society, vol. 76(3), pages 753-766, September.
    12. Xinyu Zhang & Hua Liang & Anna Liu & David Ruppert & Guohua Zou, 2016. "Selection Strategy for Covariance Structure of Random Effects in Linear Mixed-effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 275-291, March.
    13. Lei Liu & Robert A. Wolfe & Xuelin Huang, 2004. "Shared Frailty Models for Recurrent Events and a Terminal Event," Biometrics, The International Biometric Society, vol. 60(3), pages 747-756, September.
    14. Xuelin Huang & Nan Zhang, 2008. "Regression Survival Analysis with an Assumed Copula for Dependent Censoring: A Sensitivity Analysis Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1090-1099, December.
    15. Yuki Kawakubo & Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "Conditional AIC under Covariate Shift with Application to Small Area Prediction," CIRJE F-Series CIRJE-F-944, CIRJE, Faculty of Economics, University of Tokyo.
    16. Wang, Antai, 2012. "On the nonidentifiability property of Archimedean copula models under dependent censoring," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 621-625.
    17. Xingwei Tong, 2011. "Comments on: Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 58-61, May.
    18. Dalei Yu, 2016. "Conditional Akaike Information Criteria for a Class of Poisson Mixture Models with Random Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1214-1235, December.
    19. Yu, Dalei & Zhang, Xinyu & Yau, Kelvin K.W., 2013. "Information based model selection criteria for generalized linear mixed models with unknown variance component parameters," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 245-262.
    20. Yeqian Liu & Tao Hu & Jianguo Sun, 2017. "Regression analysis of current status data in the presence of a cured subgroup and dependent censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 626-650, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:112:y:2017:i:c:p:215-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.