IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v350y2025i2d10.1007_s10479-021-04373-w.html
   My bibliography  Save this article

Artificial intelligence-based human-centric decision support framework: an application to predictive maintenance in asset management under pandemic environments

Author

Listed:
  • Jacky Chen

    (Deakin University)

  • Chee Peng Lim

    (Deakin University)

  • Kim Hua Tan

    (Nottingham University Business School)

  • Kannan Govindan

    (University of Southern Denmark)

  • Ajay Kumar

    (EMLYON Business School)

Abstract

Pandemic events, particularly the current Covid-19 disease, compel organisations to re-formulate their day-to-day operations for achieving various business goals such as cost reduction. Unfortunately, small and medium enterprises (SMEs) making up more than 95% of all businesses is the hardest hit sector. This has urged SMEs to rethink their operations to survive through pandemic events. One key area is the use of new technologies pertaining to digital transformation for optimizing pandemic preparedness and minimizing business disruptions. This is especially true from the perspective of digitizing asset management methodologies in the era of Industry 4.0 under pandemic environments. Incidentally, human-centric approaches have become increasingly important in predictive maintenance through the exploitation of digital tools, especially when the workforce is increasingly interacting with new technologies such as Artificial Intelligence (AI) and Internet-of-Things devices for condition monitoring in equipment maintenance services. In this research, we propose an AI-based human-centric decision support framework for predictive maintenance in asset management, which can facilitate prompt and informed decision-making under pandemic environments. For predictive maintenance of complex systems, an enhanced trust-based ensemble model is introduced to undertake imbalanced data issues. A human-in-the-loop mechanism is incorporated to exploit the tacit knowledge elucidated from subject matter experts for providing decision support. Evaluations with both benchmark and real-world databases demonstrate the effectiveness of the proposed framework for addressing imbalanced data issues in predictive maintenance tasks. In the real-world case study, an accuracy rate of 82% is achieved, which indicates the potential of the proposed framework in assisting business sustainability pertaining to asset predictive maintenance under pandemic environments.

Suggested Citation

  • Jacky Chen & Chee Peng Lim & Kim Hua Tan & Kannan Govindan & Ajay Kumar, 2025. "Artificial intelligence-based human-centric decision support framework: an application to predictive maintenance in asset management under pandemic environments," Annals of Operations Research, Springer, vol. 350(2), pages 493-516, July.
  • Handle: RePEc:spr:annopr:v:350:y:2025:i:2:d:10.1007_s10479-021-04373-w
    DOI: 10.1007/s10479-021-04373-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04373-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04373-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sahitya Elluru & Hardik Gupta & Harpreet Kaur & Surya Prakash Singh, 2019. "Proactive and reactive models for disaster resilient supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 199-224, December.
    2. Qiang Yang & Xindong Wu, 2006. "10 Challenging Problems In Data Mining Research," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 597-604.
    3. Beglaryan, Mane & Shakhmuradyan, Gayane, 2020. "The impact of COVID-19 on small and medium-sized enterprises in Armenia: Evidence from a labor force survey," Small Business International Review, Asociación Española de Contabilidad y Administración de Empresas - AECA, vol. 4(2), pages 298-298, September.
    4. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    5. Daniel A. Griffith & Bradley Boehmke & Randy V. Bradley & Benjamin T. Hazen & Alan W. Johnson, 2019. "Embedded analytics: improving decision support for humanitarian logistics operations," Annals of Operations Research, Springer, vol. 283(1), pages 247-265, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahriar Akter & Saradhi Motamarri & Shahriar Sajib & Ruwan J. Bandara & Shlomo Tarba & Demetris Vrontis, 2024. "Theorising the Microfoundations of analytics empowerment capability for humanitarian service systems," Annals of Operations Research, Springer, vol. 335(3), pages 989-1013, April.
    2. Abhilash Kondraganti & Gopalakrishnan Narayanamurthy & Hossein Sharifi, 2024. "A systematic literature review on the use of big data analytics in humanitarian and disaster operations," Annals of Operations Research, Springer, vol. 335(3), pages 1015-1052, April.
    3. Guo Fuli & Cyril Foropon & Ma Xin, 2022. "Reducing carbon emissions in humanitarian supply chain: the role of decision making and coordination," Annals of Operations Research, Springer, vol. 319(1), pages 355-377, December.
    4. Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 2022. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 1045-1098, December.
    5. Carlos Galera-Zarco & Goulielmos Floros, 2024. "A deep learning approach to improve built asset operations and disaster management in critical events: an integrative simulation model for quicker decision making," Annals of Operations Research, Springer, vol. 339(1), pages 573-612, August.
    6. Josip Marić & Carlos Galera-Zarco & Marco Opazo-Basáez, 2022. "The emergent role of digital technologies in the context of humanitarian supply chains: a systematic literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1003-1044, December.
    7. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    8. Surajit Bag & Shivam Gupta & Lincoln Wood, 2022. "Big data analytics in sustainable humanitarian supply chain: barriers and their interactions," Annals of Operations Research, Springer, vol. 319(1), pages 721-760, December.
    9. Hannan Amoozad Mahdiraji & Aliasghar Abbasi Kamardi & Moein Beheshti & Seyed Hossein Razavi Hajiagha & Luis Rocha-Lona, 2022. "Analysing supply chain coordination mechanisms dealing with repurposing challenges during Covid-19 pandemic in an emerging economy: a multi-layer decision making approach," Operations Management Research, Springer, vol. 15(3), pages 1341-1360, December.
    10. Malin Song & Sai Yuan & Hongguang Bo & Jinbo Song & Xiongfeng Pan & Kairui Jin, 2024. "Robust optimization model of anti-epidemic supply chain under technological innovation: learning from COVID-19," Annals of Operations Research, Springer, vol. 335(3), pages 1331-1361, April.
    11. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    12. Rameshwar Dubey & David J. Bryde & Cyril Foropon & Gary Graham & Mihalis Giannakis & Deepa Bhatt Mishra, 2022. "Agility in humanitarian supply chain: an organizational information processing perspective and relational view," Annals of Operations Research, Springer, vol. 319(1), pages 559-579, December.
    13. DE CNUDDE, Sofie & MARTENS, David & EVGENIOU, Theodoros & PROVOST, Foster, 2017. "A benchmarking study of classification techniques for behavioral data," Working Papers 2017005, University of Antwerp, Faculty of Business and Economics.
    14. Walter Leal Filho & João Henrique Paulino Pires Eustachio & Andreea Corina Nita (Danila) & Maria Alzira Pimenta Dinis & Amanda Lange Salvia & Debby R. E. Cotton & Kamila Frizzo & Laís Viera Trevisan &, 2024. "Using data science for sustainable development in higher education," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 15-28, February.
    15. Abdulrahman Obaid AI-Youbi & Abdulmonem Al-Hayani & Hisham J. Bardesi & Mohammed Basheri & Miltiadis D. Lytras & Naif Radi Aljohani, 2020. "The King Abdulaziz University (KAU) Pandemic Framework: A Methodological Approach to Leverage Social Media for the Sustainable Management of Higher Education in Crisis," Sustainability, MDPI, vol. 12(11), pages 1-21, May.
    16. Liao, Jui-Jung & Shih, Ching-Hui & Chen, Tai-Feng & Hsu, Ming-Fu, 2014. "An ensemble-based model for two-class imbalanced financial problem," Economic Modelling, Elsevier, vol. 37(C), pages 175-183.
    17. Prashant Kumar & Amit Kumar Kushwaha & Arpan Kumar Kar & Yogesh K. Dwivedi & Nripendra P Rana, 2025. "Managing buyer experience in a buyer–supplier relationship in MSMEs and SMEs," Annals of Operations Research, Springer, vol. 350(2), pages 753-780, July.
    18. Samuel Fosso Wamba, 2022. "Humanitarian supply chain: a bibliometric analysis and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 937-963, December.
    19. Alessia D’Andrea & Patrizia Grifoni & Fernando Ferri, 2022. "Discussing the Role of ICT in Sustainable Disaster Management," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    20. Nezih Altay & Graham Heaslip & Gyöngyi Kovács & Karen Spens & Peter Tatham & Alain Vaillancourt, 2024. "Innovation in humanitarian logistics and supply chain management: a systematic review," Annals of Operations Research, Springer, vol. 335(3), pages 965-987, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:350:y:2025:i:2:d:10.1007_s10479-021-04373-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.