IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v348y2025i2d10.1007_s10479-023-05194-9.html
   My bibliography  Save this article

Balanced weighted extreme learning machine for imbalance learning of credit default risk and manufacturing productivity

Author

Listed:
  • Waqar Ahmed Khan

    (King Fahd University of Petroleum and Minerals)

Abstract

Imbalanced class distribution exists in real world problems and is considered an important research topic. The weighted extreme learning machine (WELM) is a cost sensitive method that effectively handles imbalance problems. However, the effect of data complexity on classifier performance is considered to be greater compared to the imbalance distribution. To address this issue, this work proposes a balanced WELM (BLWELM) by integrating various sampling methods and WELM in k-fold learning to reduce the data complexity and improve class distribution. The main idea is to generate new samples and remove overlapping noisy samples that exist on the borderline to improve the separating boundary between minority and majority class samples. Extensive experimental work on benchmarking datasets has demonstrated the effectiveness of the proposed method. In addition, credit default and manufacturing productivity were predicted by BLWELM. The analyses show that BLWELM gives better classification results compared to WELM and many other popular machine learning methods. The work may be used to facilitate financial institutions in allocating credit to applicants based on their previous history to avoid financial risk, and manufacturing companies can allocate highly productive workers to customer orders that need immediate delivery to avoid delays in the entire supply chain network.

Suggested Citation

  • Waqar Ahmed Khan, 2025. "Balanced weighted extreme learning machine for imbalance learning of credit default risk and manufacturing productivity," Annals of Operations Research, Springer, vol. 348(2), pages 833-861, May.
  • Handle: RePEc:spr:annopr:v:348:y:2025:i:2:d:10.1007_s10479-023-05194-9
    DOI: 10.1007/s10479-023-05194-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05194-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05194-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:348:y:2025:i:2:d:10.1007_s10479-023-05194-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.