IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v347y2025i3d10.1007_s10479-025-06468-0.html
   My bibliography  Save this article

Scheduling problems on parallel machines with machine-dependent generalized due-dates

Author

Listed:
  • Baruch Mor

    (Ariel University)

  • Gur Mosheiov

    (The Hebrew University
    Lev Academic Center)

  • Dvir Shabtay

    (Ben-Gurion University of the Negev)

Abstract

In scheduling problems with generalized due-dates, the due-dates are position-dependent (and not job-dependent as in classical scheduling). In this paper, we study scheduling problems on parallel machines, and the underlying assumption is that the generalized due-dates are machine-dependent. The following scheduling measures are considered: total tardiness, maximum tardiness, number of tardy jobs, and total late work. We show that all the problems are NP-hard even if all generalized due-dates are identical. We complement this hardness result by showing that all problems are solvable in pseudo-polynomial time and that minimizing total late work is fixed parametrized tractable with respect to the number of different generalized due-dates and processing times in the instance. We also tested the pseudo-polynomial time algorithms, showing they can easily solve instances containing up to 200 jobs.

Suggested Citation

  • Baruch Mor & Gur Mosheiov & Dvir Shabtay, 2025. "Scheduling problems on parallel machines with machine-dependent generalized due-dates," Annals of Operations Research, Springer, vol. 347(3), pages 1455-1471, April.
  • Handle: RePEc:spr:annopr:v:347:y:2025:i:3:d:10.1007_s10479-025-06468-0
    DOI: 10.1007/s10479-025-06468-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-025-06468-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-025-06468-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Myoung-Ju Park & Byung-Cheon Choi & Yunhong Min & Kyung Min Kim, 2020. "Two-Machine Ordered Flow Shop Scheduling with Generalized Due Dates," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-16, January.
    2. Baruch Mor & Gur Mosheiov & Dvir Shabtay, 2021. "Minimizing the total tardiness and job rejection cost in a proportionate flow shop with generalized due dates," Journal of Scheduling, Springer, vol. 24(6), pages 553-567, December.
    3. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    4. Gur Mosheiov & Daniel Oron & Dvir Shabtay, 2022. "On the tractability of hard scheduling problems with generalized due-dates with respect to the number of different due-dates," Journal of Scheduling, Springer, vol. 25(5), pages 577-587, October.
    5. Enrique Gerstl & Gur Mosheiov, 2020. "Single machine scheduling to maximize the number of on-time jobs with generalized due-dates," Journal of Scheduling, Springer, vol. 23(3), pages 289-299, June.
    6. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    7. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    8. Hall, Nicholas G. & Sethi, Suresh P. & Sriskandarajah, Chelliah, 1991. "On the complexity of generalized due date scheduling problems," European Journal of Operational Research, Elsevier, vol. 51(1), pages 100-109, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gur Mosheiov & Daniel Oron & Dvir Shabtay, 2022. "On the tractability of hard scheduling problems with generalized due-dates with respect to the number of different due-dates," Journal of Scheduling, Springer, vol. 25(5), pages 577-587, October.
    2. Myoung-Ju Park & Byung-Cheon Choi & Yunhong Min & Kyung Min Kim, 2020. "Two-Machine Ordered Flow Shop Scheduling with Generalized Due Dates," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-16, January.
    3. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    4. Baruch Mor & Gur Mosheiov & Dvir Shabtay, 2021. "Minimizing the total tardiness and job rejection cost in a proportionate flow shop with generalized due dates," Journal of Scheduling, Springer, vol. 24(6), pages 553-567, December.
    5. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    6. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    7. K. Aardal & R. E. Bixby & C. A. J. Hurkens & A. K. Lenstra & J. W. Smeltink, 2000. "Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 192-202, August.
    8. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    9. Kuo-Ching Ying & Pourya Pourhejazy & Chuan-En Sung, 2024. "Two-agent proportionate flowshop scheduling with deadlines: polynomial-time optimization algorithms," Annals of Operations Research, Springer, vol. 343(1), pages 543-558, December.
    10. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    11. Jiang, Yiwei & Wu, Mengjing & Chen, Xin & Dong, Jianming & Cheng, T.C.E. & Blazewicz, Jacek & Ji, Min, 2024. "Online early work scheduling on parallel machines," European Journal of Operational Research, Elsevier, vol. 315(3), pages 855-862.
    12. Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
    13. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    14. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    15. Aidin Rezaeian & Hamidreza Koosha & Mohammad Ranjbar & Saeed Poormoaied, 2024. "The assignment of project managers to projects in an uncertain dynamic environment," Annals of Operations Research, Springer, vol. 341(2), pages 1107-1134, October.
    16. Friedrich Eisenbrand & Gennady Shmonin, 2008. "Parametric Integer Programming in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 839-850, November.
    17. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.
    18. Matan Atsmony & Gur Mosheiov, 2023. "Scheduling to maximize the weighted number of on-time jobs on parallel machines with bounded job-rejection," Journal of Scheduling, Springer, vol. 26(2), pages 193-207, April.
    19. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    20. Caplin, Andrew & Leahy, John, 2020. "Comparative statics in markets for indivisible goods," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 80-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:347:y:2025:i:3:d:10.1007_s10479-025-06468-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.