IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i1d10.1007_s10479-024-06153-8.html
   My bibliography  Save this article

A stochastic algorithm for deterministic multistage optimization problems

Author

Listed:
  • Marianne Akian

    (INRIA Saclay and CMAP, École polytechnique, IP Paris, CNRS)

  • Jean-Philippe Chancelier

    (CERMICS, École des Ponts ParisTech)

  • Benoît Tran

    (CERMICS, École des Ponts ParisTech)

Abstract

Several attempts to dampen the curse of dimensionality problem of the Dynamic Programming approach for solving multistage optimization problems have been investigated. One popular way to address this issue is the Stochastic Dual Dynamic Programming method (Sddp) introduced by Pereira and Pinto (Math Program 52(1–3):359–375. https://doi.org/10.1007/BF01582895 ). Assuming that the value function is convex (for a minimization problem), one builds a non-decreasing sequence of lower (or outer) convex approximations of the value function. Those convex approximations are constructed as a supremum of affine cuts. On continuous time deterministic optimal control problems, assuming that the value function is semiconvex, Zheng Qu, inspired by the work of McEneaney, introduced in 2013 a stochastic max-plus scheme that builds a non-increasing sequence of upper (or inner) approximations of the value function. In this note, we build a common framework for both the Sddp and a discrete time version of Zheng Qu’s algorithm to solve deterministic multistage optimization problems. Our algorithm generates a monotone sequence of approximations of the value function as a pointwise supremum, or infimum, of basic (affine or quadratic for example) functions which are randomly selected. We give sufficient conditions on the way basic functions are selected in order to ensure almost sure convergence of the approximations to the value function on a set of interest.

Suggested Citation

  • Marianne Akian & Jean-Philippe Chancelier & Benoît Tran, 2025. "A stochastic algorithm for deterministic multistage optimization problems," Annals of Operations Research, Springer, vol. 345(1), pages 1-38, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:1:d:10.1007_s10479-024-06153-8
    DOI: 10.1007/s10479-024-06153-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06153-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06153-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    2. Wei Kang & Lucas C. Wilcox, 2017. "Mitigating the curse of dimensionality: sparse grid characteristics method for optimal feedback control and HJB equations," Computational Optimization and Applications, Springer, vol. 68(2), pages 289-315, November.
    3. P. Girardeau & V. Leclere & A. B. Philpott, 2015. "On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 130-145, February.
    4. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
    5. Richard Bellman, 1954. "On some applications of the theory of dynamic programming to logistics," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(2), pages 141-153, June.
    6. Stuart Dreyfus, 2002. "Richard Bellman on the Birth of Dynamic Programming," Operations Research, INFORMS, vol. 50(1), pages 48-51, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    2. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    3. Guigues, Vincent & Juditsky, Anatoli & Nemirovski, Arkadi, 2021. "Constant Depth Decision Rules for multistage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 295(1), pages 223-232.
    4. Zhou, Shaorui & Zhang, Hui & Shi, Ning & Xu, Zhou & Wang, Fan, 2020. "A new convergent hybrid learning algorithm for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 283(1), pages 33-46.
    5. Pritchard, Geoffrey, 2015. "Stochastic inflow modeling for hydropower scheduling problems," European Journal of Operational Research, Elsevier, vol. 246(2), pages 496-504.
    6. Park, Jangho & Bayraksan, Güzin, 2023. "A multistage distributionally robust optimization approach to water allocation under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 306(2), pages 849-871.
    7. Oscar Dowson & Lea Kapelevich, 2021. "SDDP.jl : A Julia Package for Stochastic Dual Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 27-33, January.
    8. Guigues, Vincent, 2017. "Dual Dynamic Programing with cut selection: Convergence proof and numerical experiments," European Journal of Operational Research, Elsevier, vol. 258(1), pages 47-57.
    9. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    10. Vitor L. de Matos & David P. Morton & Erlon C. Finardi, 2017. "Assessing policy quality in a multistage stochastic program for long-term hydrothermal scheduling," Annals of Operations Research, Springer, vol. 253(2), pages 713-731, June.
    11. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    12. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    13. Mateus Waga & Davi Valladão & Alexandre Street & Thuener Silva, 2022. "Disentangling Shareholder Risk Aversion from Leverage-Dependent Borrowing Cost on Corporate Policies," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1-24, October.
    14. Vincent Guigues & Renato D. C. Monteiro, 2021. "Stochastic Dynamic Cutting Plane for Multistage Stochastic Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 513-559, May.
    15. Guigues, Vincent & Shapiro, Alexander & Cheng, Yi, 2023. "Duality and sensitivity analysis of multistage linear stochastic programs," European Journal of Operational Research, Elsevier, vol. 308(2), pages 752-767.
    16. Lorenzo Reus & Rodolfo Prado, 2022. "Need to Meet Investment Goals? Track Synthetic Indexes with the SDDP Method," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 47-69, June.
    17. Lucas Merabet & Bernardo Freitas Paulo Costa & Vincent Leclere, 2024. "Policy with guaranteed risk-adjusted performance for multistage stochastic linear problems," Computational Management Science, Springer, vol. 21(2), pages 1-25, December.
    18. Kiszka, Adriana & Wozabal, David, 2025. "Stochastic dual dynamic programming for optimal power flow problems under uncertainty," European Journal of Operational Research, Elsevier, vol. 321(3), pages 814-836.
    19. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    20. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:1:d:10.1007_s10479-024-06153-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.