IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v258y2017i1p47-57.html
   My bibliography  Save this article

Dual Dynamic Programing with cut selection: Convergence proof and numerical experiments

Author

Listed:
  • Guigues, Vincent

Abstract

We consider convex optimization problems formulated using dynamic programing equations. Such problems can be solved using the Dual Dynamic Programing algorithm combined with the Level 1 cut selection strategy or the Territory algorithm to select the most relevant Benders cuts. We propose a limited memory variant of Level 1 and show the convergence of DDP combined with the Territory algorithm, Level 1 or its variant for nonlinear optimization problems. In the special case of linear programs, we show convergence in a finite number of iterations. Numerical simulations illustrate the interest of our variant and show that it can be much quicker than a simplex algorithm on some large instances of portfolio selection and inventory problems.

Suggested Citation

  • Guigues, Vincent, 2017. "Dual Dynamic Programing with cut selection: Convergence proof and numerical experiments," European Journal of Operational Research, Elsevier, vol. 258(1), pages 47-57.
  • Handle: RePEc:eee:ejores:v:258:y:2017:i:1:p:47-57
    DOI: 10.1016/j.ejor.2016.10.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716308815
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
    2. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    3. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Rui Peng & Shapiro, Alexander, 2020. "Risk neutral reformulation approach to risk averse stochastic programming," European Journal of Operational Research, Elsevier, vol. 286(1), pages 21-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:258:y:2017:i:1:p:47-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.