IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v343y2024i2d10.1007_s10479-024-06245-5.html
   My bibliography  Save this article

The unexpected power of linear programming: an updated collection of surprising applications

Author

Listed:
  • Bruce Golden

    (University of Maryland)

  • Linus Schrage

    (University of Chicago)

  • Douglas Shier

    (Clemson University)

  • Lida Anna Apergi

    (University of Maryland)

Abstract

Linear programming has had a tremendous impact in the modeling and solution of a great diversity of applied problems, especially in the efficient allocation of resources. As a result, this methodology forms the backbone of introductory courses in operations research. What students, and others, may not appreciate is that linear programming transcends its linear nomenclature and can be applied to an even wider range of important practical problems. The objective of this article is to present a selection, and just a selection, from this range of problems that at first blush do not seem amenable to linear programming formulation. The exposition focuses on the most basic models in these selected applications, with pointers to more elaborate formulations and extensions. Thus, our intent is to expand the modeling awareness of those first encountering linear programming. In addition, we hope this article will be of interest to those who teach linear programming and to seasoned academics and practitioners, alike.

Suggested Citation

  • Bruce Golden & Linus Schrage & Douglas Shier & Lida Anna Apergi, 2024. "The unexpected power of linear programming: an updated collection of surprising applications," Annals of Operations Research, Springer, vol. 343(2), pages 573-605, December.
  • Handle: RePEc:spr:annopr:v:343:y:2024:i:2:d:10.1007_s10479-024-06245-5
    DOI: 10.1007/s10479-024-06245-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06245-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06245-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Todd Retchless & Bruce Golden & Edward Wasil, 2007. "Ranking US Army Generals of the 20th Century: A Group Decision-Making Application of the Analytic Hierarchy Process," Interfaces, INFORMS, vol. 37(2), pages 163-175, April.
    2. Ali Emrouznejad & Marianna Marra, 2017. "The state of the art development of AHP (1979–2017): a literature review with a social network analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6653-6675, November.
    3. Dylan Jones & Mehrdad Tamiz, 2010. "Practical Goal Programming," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-5771-9, April.
    4. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    5. Freed, Ned & Glover, Fred, 1981. "Simple but powerful goal programming models for discriminant problems," European Journal of Operational Research, Elsevier, vol. 7(1), pages 44-60, May.
    6. Willy Gochet & Antonie Stam & V. Srinivasan & Shaoxiang Chen, 1997. "Multigroup Discriminant Analysis Using Linear Programming," Operations Research, INFORMS, vol. 45(2), pages 213-225, April.
    7. Peter M. Ellis & Raymond W. Corn, 1984. "Using Bivalent Integer Programming to Select Teams for Intercollegiate Women's Gymnastics Competition," Interfaces, INFORMS, vol. 14(3), pages 41-46, June.
    8. Flavell, RB, 1976. "A new goal programming formulation," Omega, Elsevier, vol. 4(6), pages 731-732.
    9. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    10. A. Land & S. Powell, 1985. "Note: More Gymnastics," Interfaces, INFORMS, vol. 15(4), pages 52-54, August.
    11. G Appa, 2002. "On the uniqueness of solutions to linear programs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(10), pages 1127-1132, October.
    12. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    13. Bruce Golden & Linus Schrage & Douglas Shier & Lida Anna Apergi, 2021. "The power of linear programming: some surprising and unexpected LPs," 4OR, Springer, vol. 19(1), pages 15-40, March.
    14. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruce Golden & Linus Schrage & Douglas Shier & Lida Anna Apergi, 2021. "The power of linear programming: some surprising and unexpected LPs," 4OR, Springer, vol. 19(1), pages 15-40, March.
    2. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    3. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    4. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    5. Roe, R.A. & Smeelen, M. & Hoefeld, C., 2005. "Outsourcing and organizational change : an employee perspective," Research Memorandum 045, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    6. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    7. Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.
    8. Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
    9. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    10. Benítez-Fernández, Amalia & Ruiz, Francisco, 2020. "A Meta-Goal Programming approach to cardinal preferences aggregation in multicriteria problems," Omega, Elsevier, vol. 94(C).
    11. Philip-Mark Spanidis & Christos Roumpos & Francis Pavloudakis, 2020. "A Multi-Criteria Approach for the Evaluation of Low Risk Restoration Projects in Continuous Surface Lignite Mines," Energies, MDPI, vol. 13(9), pages 1-22, May.
    12. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "Rouben Ranking Function and parametric approach to quadratically constrained multiobjective quadratic fractional programming with trapezoidal fuzzy number coefficients," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 923-932, April.
    13. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    14. J. J. Glen, 2004. "Dichotomous categorical variable formation in mathematical programming discriminant analysis models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 575-596, June.
    15. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    16. Mojtaba Borza & Azmin Sham Rambely, 2021. "A Linearization to the Sum of Linear Ratios Programming Problem," Mathematics, MDPI, vol. 9(9), pages 1-10, April.
    17. Jiménez, Mariano & Bilbao-Terol, Amelia & Arenas-Parra, Mar, 2021. "Incorporating preferential weights as a benchmark into a Sequential Reference Point Method," European Journal of Operational Research, Elsevier, vol. 291(2), pages 575-585.
    18. Carrizosa, E. & Martin-Barragán, B. & Plastria, F. & Romero Morales, M.D., 2002. "A Dissimilarity-based approach for Classification," Research Memorandum 027, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    19. Adem, Jan & Gochet, Willy, 2006. "Mathematical programming based heuristics for improving LP-generated classifiers for the multiclass supervised classification problem," European Journal of Operational Research, Elsevier, vol. 168(1), pages 181-199, January.
    20. Jones, Dylan, 2011. "A practical weight sensitivity algorithm for goal and multiple objective programming," European Journal of Operational Research, Elsevier, vol. 213(1), pages 238-245, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:343:y:2024:i:2:d:10.1007_s10479-024-06245-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.