IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-023-05508-x.html
   My bibliography  Save this article

Automatic MILP solver configuration by learning problem similarities

Author

Listed:
  • Abdelrahman Hosny

    (Brown University)

  • Sherief Reda

    (Brown University
    Brown University)

Abstract

A large number of real-world optimization problems can be formulated as Mixed Integer Linear Programs (MILP). MILP solvers expose numerous configuration parameters to control their internal algorithms. Solutions, and their associated costs or runtimes, are significantly affected by the choice of the configuration parameters, even when problem instances have the same number of decision variables and constraints. On one hand, using the default solver configuration leads to suboptimal solutions. On the other hand, searching and evaluating a large number of configurations for every problem instance is time-consuming and, in some cases, infeasible. In this study, we aim to predict configuration parameters for unseen problem instances that yield lower-cost solutions without the time overhead of searching-and-evaluating configurations at the solving time. Toward that goal, we first investigate the cost correlation of MILP problem instances that come from the same distribution when solved using different configurations. We show that instances that have similar costs using one solver configuration also have similar costs using another solver configuration in the same runtime environment. After that, we present a methodology based on Deep Metric Learning to learn MILP similarities that correlate with their final solutions’ costs. At inference time, given a new problem instance, it is first projected into the learned metric space using the trained model, and configuration parameters are instantly predicted using previously-explored configurations from the nearest neighbor instance in the learned embedding space. Empirical results on real-world problem benchmarks show that our method predicts configuration parameters that improve solutions’ costs by up to 38% compared to existing approaches.

Suggested Citation

  • Abdelrahman Hosny & Sherief Reda, 2024. "Automatic MILP solver configuration by learning problem similarities," Annals of Operations Research, Springer, vol. 339(1), pages 909-936, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05508-x
    DOI: 10.1007/s10479-023-05508-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05508-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05508-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    2. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    2. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.
    3. Carolina G. Marcelino & João V. C. Avancini & Carla A. D. M. Delgado & Elizabeth F. Wanner & Silvia Jiménez-Fernández & Sancho Salcedo-Sanz, 2021. "Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    4. Leloup, Emeline & Paquay, Célia & Pironet, Thierry & Oliveira, José Fernando, 2025. "A three-phase algorithm for the three-dimensional loading vehicle routing problem with split pickups and time windows," European Journal of Operational Research, Elsevier, vol. 323(1), pages 45-61.
    5. Lara, Cristiana L. & Koenemann, Jochen & Nie, Yisu & de Souza, Cid C., 2023. "Scalable timing-aware network design via lagrangian decomposition," European Journal of Operational Research, Elsevier, vol. 309(1), pages 152-169.
    6. Yanina Fumero & Gabriela Corsano & Jorge Montagna, 2012. "Planning and scheduling of multistage multiproduct batch plants operating under production campaigns," Annals of Operations Research, Springer, vol. 199(1), pages 249-268, October.
    7. Elisama Araújo Silva Oliveira & Elizabeth Wanner & Elisangela Martins Sá & Sérgio Ricardo Souza, 2025. "A local branching-based solution for the multi-period cutting stock problem with tardiness, earliness, and setup costs," Journal of Heuristics, Springer, vol. 31(1), pages 1-57, March.
    8. Arda, Yasemin & Cattaruzza, Diego & François, Véronique & Ogier, Maxime, 2024. "Home chemotherapy delivery: An integrated production scheduling and multi-trip vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 317(2), pages 468-486.
    9. Véronique François & Yasemin Arda & Yves Crama, 2019. "Adaptive Large Neighborhood Search for Multitrip Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 53(6), pages 1706-1730, November.
    10. Ofer M. Shir & Xi. Xing & Herschel. Rabitz, 2021. "Multi-level evolution strategies for high-resolution black-box control," Journal of Heuristics, Springer, vol. 27(6), pages 1021-1055, December.
    11. Kallestad, Jakob & Hasibi, Ramin & Hemmati, Ahmad & Sörensen, Kenneth, 2023. "A general deep reinforcement learning hyperheuristic framework for solving combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 309(1), pages 446-468.
    12. Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
    13. David Van Bulck & Dries Goossens & Andrea Schaerf, 2025. "Multi-neighbourhood simulated annealing for the ITC-2007 capacitated examination timetabling problem," Journal of Scheduling, Springer, vol. 28(2), pages 217-232, April.
    14. Andrade, Carlos E. & Toso, Rodrigo F. & Gonçalves, José F. & Resende, Mauricio G.C., 2021. "The Multi-Parent Biased Random-Key Genetic Algorithm with Implicit Path-Relinking and its real-world applications," European Journal of Operational Research, Elsevier, vol. 289(1), pages 17-30.
    15. Stefansson, Hlynur & Sigmarsdottir, Sigrun & Jensson, Pall & Shah, Nilay, 2011. "Discrete and continuous time representations and mathematical models for large production scheduling problems: A case study from the pharmaceutical industry," European Journal of Operational Research, Elsevier, vol. 215(2), pages 383-392, December.
    16. Moo-Sung Sohn & Jiwoong Choi & Hoseog Kang & In-Chan Choi, 2017. "Multiobjective Production Planning at LG Display," Interfaces, INFORMS, vol. 47(4), pages 279-291, August.
    17. Molenbruch, Yves & Braekers, Kris & Caris, An, 2017. "Benefits of horizontal cooperation in dial-a-ride services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 97-119.
    18. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    19. Weiner, Jake & Ernst, Andreas T. & Li, Xiaodong & Sun, Yuan & Deb, Kalyanmoy, 2021. "Solving the maximum edge disjoint path problem using a modified Lagrangian particle swarm optimisation hybrid," European Journal of Operational Research, Elsevier, vol. 293(3), pages 847-862.
    20. Pessoa, Luciana S. & Andrade, Carlos E., 2018. "Heuristics for a flowshop scheduling problem with stepwise job objective function," European Journal of Operational Research, Elsevier, vol. 266(3), pages 950-962.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05508-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.