IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v335y2024i1d10.1007_s10479-023-05585-y.html
   My bibliography  Save this article

Statistical arbitrage under a fractal price model

Author

Listed:
  • Yun Xiang

    (Southwestern University of Finance and Economics)

  • Shijie Deng

    (Georgia Institute of Technology)

Abstract

We investigate a class of statistical arbitrage strategies under the assumption that stock prices are driven by fractional Brownian motions. Specifically, the buy-and-hold with a stop-profit threshold strategies are analysed to demonstrate the existence of statistical arbitrage opportunities. Our analysis establishes the conditions for the considered strategy class to yield statistical arbitrage. The Hurst parameter in the fractional Brownian motion-based asset price model is shown to be a determining factor. The analysis is confirmed by a Monte Carlo simulation study. Furthermore, a modified Thompson sampling method is proposed for optimizing the strategy parameters of the selling-threshold and its growth rate to maximize investment performance.

Suggested Citation

  • Yun Xiang & Shijie Deng, 2024. "Statistical arbitrage under a fractal price model," Annals of Operations Research, Springer, vol. 335(1), pages 425-439, April.
  • Handle: RePEc:spr:annopr:v:335:y:2024:i:1:d:10.1007_s10479-023-05585-y
    DOI: 10.1007/s10479-023-05585-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05585-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05585-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Corazza & A.G. Malliaris & Carla Nardelli, 1997. "Searching for fractal structure in agricultural futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(4), pages 433-473, June.
    2. Binh Do & Robert Faff, 2012. "Are Pairs Trading Profits Robust To Trading Costs?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 35(2), pages 261-287, June.
    3. Erdinc Akyildirim & Frank J. Fabozzi & Ahmet Goncu & Ahmet Sensoy, 2022. "Statistical arbitrage in jump-diffusion models with compound Poisson processes," Annals of Operations Research, Springer, vol. 313(2), pages 1357-1371, June.
    4. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    5. Hogan, Steve & Jarrow, Robert & Teo, Melvyn & Warachka, Mitch, 2004. "Testing market efficiency using statistical arbitrage with applications to momentum and value strategies," Journal of Financial Economics, Elsevier, vol. 73(3), pages 525-565, September.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. Paolo Guasoni & Yuliya Mishura & Miklós Rásonyi, 2021. "High-frequency trading with fractional Brownian motion," Finance and Stochastics, Springer, vol. 25(2), pages 277-310, April.
    8. Liu, Qiang & Xiang, Yun & Zhao, Yonghong, 2019. "An outperforming investment strategy under fractional Brownian motion," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 505-515.
    9. Daniel Russo & Benjamin Van Roy, 2014. "Learning to Optimize via Posterior Sampling," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1221-1243, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Stübinger & Lucas Schneider, 2019. "Statistical Arbitrage with Mean-Reverting Overnight Price Gaps on High-Frequency Data of the S&P 500," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    2. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Stübinger, Johannes, 2018. "Statistical arbitrage with optimal causal paths on high-frequencydata of the S&P 500," FAU Discussion Papers in Economics 01/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Ahmet Göncü & Erdinç Akyıldırım, 2016. "Statistical Arbitrage with Pairs Trading," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 307-319, June.
    5. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    6. Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
    7. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    8. Krauss, Christopher & Stübinger, Johannes, 2015. "Nonlinear dependence modeling with bivariate copulas: Statistical arbitrage pairs trading on the S&P 100," FAU Discussion Papers in Economics 15/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Sabino da Silva, Fernando A.B. & Ziegelmann, Flavio A. & Caldeira, João F., 2023. "A pairs trading strategy based on mixed copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 16-34.
    11. Johannes St binger & Jens Bredthauer, 2017. "Statistical Arbitrage Pairs Trading with High-frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 650-662.
    12. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    13. Emmanouil Mavrakis & Christos Alexakis, 2018. "Statistical Arbitrage Strategies under Different Market Conditions: The Case of the Greek Banking Sector," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2), pages 159-185, August.
    14. Bruno Breyer Caldas & João Frois Caldeira & Guilherme Vale Moura, 2016. "Is Pairs Trading Performance Sensitive To The Methodologies?: A Comparison," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 130, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    15. Alexander Shulzhenko, 2023. "Copula-based deviation measure of cointegrated financial assets," Papers 2312.02081, arXiv.org.
    16. Ahmet Göncü & Erdinc Akyildirim, 2017. "Statistical Arbitrage In The Multi-Asset Black–Scholes Economy," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-18, March.
    17. Ahmet G�nc�, 2015. "Statistical arbitrage in the Black-Scholes framework," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1489-1499, September.
    18. Ahmet Göncü & Erdinc Akyildirim, 2016. "A stochastic model for commodity pairs trading," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1843-1857, December.
    19. Baiquan Ma & Robert Ślepaczuk, 2022. "The profitability of pairs trading strategies on Hong-Kong stock market: distance, cointegration, and correlation methods," Working Papers 2022-02, Faculty of Economic Sciences, University of Warsaw.
    20. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:335:y:2024:i:1:d:10.1007_s10479-023-05585-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.